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Abstract

We investigate the problem of testing whether an arbitrary number of variables are
jointly independent. Our method is an extension of the kernel-based two variable
Hilbert-Schmidt independence criterion (HSIC) and allows for an arbitrary number
of variables, which we denote by d-variable Hilbert-Schmidt independence criterion
(dHSIC). In the population case, the value of dHSIC is zero if and only if the d
variables are jointly independent. Based on an empirical estimate of dHSIC, we
define four different non-parametric hypothesis tests (H0: joint independence); the
permutation test, the bootstrap test, the gamma approximation based test and the
eigenvalue based test. We prove that the permutation test achieves significance
level and that the bootstrap test and the eigenvalue based test achieve pointwise
asymptotic significance level as well as consistency (i.e. are able to detect any type
of dependence in the large sample limit). Finally, we show that our tests can be
applied to causal inference to determine the causal ordering on simulated and real
data. We compare these results to an approach which combines different 2-variable
HSIC tests using a Bonferroni correction.
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Chapter 1

Introduction

1.1 Problem and motivation

We consider the problem whether in a sample (X1, . . . ,Xm), with Xi = (X1
i , . . . , X

d
i ),

the d components (X1
1 , . . . , X

1
m), . . . , (Xd

1 , . . . , X
d
m) are jointly independent. For example,

a lot of statistical methods require the input variables to be jointly independent. It
is therefore essential to be able to verify this assumption before applying these methods.
Another example where this problem appears is causality, in particular in causal inference.
This field deals with finding causal relationships between variables, e.g. which biological
markers are causal for a certain disease. Causal statements over d variables can be
formalized using the concept of an SEM, for example. SEMs assume the existence of
d noise variables which are required to be jointly independent. As a consequence, many
causal inference methods need to measure dependence of some sort; often this dependence
can be non-linear, for example, when analyzing residuals after a linear regression. This
motivates the need for widely applicable methods to test for and measure dependence.

The main difficulty when analyzing dependence between variables is that the dependence
structure can be arbitrarily complicated. It is therefore not at all obvious how to appropri-
ately measure dependence in a way that is sufficiently general to include all possibilities.
For example, using correlation as a measure of dependence without additional assump-
tions is not sufficient because there exist random variables which are uncorrelated but
dependent. Most classical methods for testing independence rely on assumptions on the
underlying random variables. The Pearson’s chi-squared independence test (e.g. Lehmann
and Romano, 2005), for example, requires categorical data and Hoeffding’s independence
test (see Hoeffding, 1948b) requires a continuous density.

Several non-parametric approaches based on kernel methods have been developed at the
beginning of the 21st century, most of which are based on the covariance operator in the
reproducing kernel Hilbert space (RKHS). One of them is the Hilbert-Schmidt indepen-
dence criterion (HSIC), which was introduced by Gretton et al. (2005) and is a measure
of dependence for two random variables. It has the desirable property of being zero if
and only if the two random variables are independent and additionally allows to be con-
sistently estimated based on a finite sample. These two properties allow the detection of

1



CHAPTER 1. INTRODUCTION 2

any type of dependence given a sufficiently large sample size.

This thesis introduces a direct extension of the two variable HSIC to a version allowing for
an arbitrary number of variables, which we call the d-variable Hilbert-Schmidt indepen-
dence criterion (dHSIC). Based on this criterion, we introduce four different hypothesis
tests that can be used to test for statistically significant evidence of dependence.

1.2 Outline

In Section 2 we introduce all of the required background material. This involves a short
summary of required tools from functional analysis, an introduction to kernel methods,
an exposition of the theory of U-and V-statistics and finally a summary of the statistical
framework used throughout this thesis. This section can be skipped and only used as
reference whenever the notation or concepts become unclear in the remaining thesis. The
main part starts in Section 3, where we introduce the d-variable Hilbert-Schmidt inde-
pendence criterion and its empirical estimator. In Section 4 we construct four different
hypothesis tests based on dHSIC and prove important properties of them. At the end
of this section, we also give details on how to implement each of the four the hypothesis
tests. Section 5 numerically assesses level, power and runtime of the hypothesis tests.
Finally, in Section 6 we consider an application of dHSIC to causal inference.

1.3 Contributions

This thesis builds on the papers of Gretton et al. (2005), Gretton et al. (2007) and Smola
et al. (2007) but extends the material in several aspects. First of all, the extension of the
two variable HSIC to the generalized version dHSIC is new and has previously only been
briefly mentioned by Sejdinovic et al. (2013), in the case of three variables. All results
related to dHSIC are consequently also new, however most of them carry over directly
from the existing results for HSIC. We prove new results about V-statistics which are
required in the proofs of some of these statements. Previously, these results have only
been stated without proof. The mathematical rigorous treatment of the permutation test
and the bootstrap test is novel, as are the results about their level and consistency given
in Proposition 4.5, Proposition 4.9 and Proposition 4.10. For the extension of the gamma
approximation based test, we computed both the mean and variance in the general d-
variable setting in Lemma 4.11 and Lemma 4.12, which turns out to be rather complex.
The idea for the eigenvalue test comes from Gretton et al. (2009), in which this approach
has been applied to the Maximum Mean Discrepancy (MMD). The MMD is directly
related to the HSIC and hence we are able to extend the results to dHSIC. Finally, in
order to make our tests accessible for everyone we have created an R-package, which will
be available on CRAN. The following list summarizes the contributions:

(i) extension of HSIC to dHSIC

(ii) new results for V-statistics (have been used but not proved)
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(iii) rigorous treatment of permutation and bootstrap test

(iv) gamma approximation for d-variables

(v) eigenvalue approach based test

(vi) R-package containing all tests (to be available on CRAN)



Chapter 2

Background material

For simplicity we adopt the convention that any linear space is always a linear space
over the field of the real numbers. The following list summarizes basic notation used
throughout this work.

• Let B be a Banach space. Then we denote by

L(B) := {A : B → B | A bounded linear}

the space of bounded linear operators.

• Let (Ω,F , µ) be a measure space and B a Banach space. Then we denote by

L0(µ, ‖·‖B)

the space of Borel-measurable functions from Ω to B, and by

Lp(µ, ‖·‖B)

the space of p-integrable functions from Ω to B, and by

Lp(µ, ‖·‖B)

the space of equivalence classes of p-integrable functions from Ω to B. For more
details see Definition A.8 and Definition A.9.

• Let X be a separable metric space. We then denote by

Mf (X )

the space of finite Borel measures, and by

P(X )

the space of finite Borel probability measures, for more details see Definition 2.23.

4
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• Let H be a Hilbert space. We then denote by

L1(H)

the space of nuclear operators, and by

HS(H)

the space of Hilbert-Schmidt operators, see Section 2.1.1 and Section 2.1.2 for more
details.

• Let H1 and H2 be a Hilbert spaces and let A : H1 → H2 be a bounded linear
operator. Then the adjoint ofA is the unique bounded linear operatorA∗ : H2 → H1

satisfying for all x ∈ H1, y ∈ H2 that

〈Ax, y〉H2
= 〈x,A∗y〉H1

.

Existence and uniqueness follow from the Riesz representation theorem.

• Let H be a Hilbert space and let v, w ∈ H. We denote by v⊗w ∈ L(H) the function
with the property that for all x ∈ H it holds that

(v ⊗ w)(x) := 〈v, x〉Hw. (2.1)

Any operator of this form is referred to as rank one operator. While it will be clear
from the context one has to be careful not to confuse this with the tensor product
of functions or kernels introduced in Appendix A.2.

• Let X be a metric space with metric d and let U ⊆ X . We define the set

U :=

{
x ∈ X

∣∣∣ inf
y∈U

d(x, y) = 0

}
and call it the closure of U .

• Let (Ω,F ,P) be a probability space, let B be a Banach space and let X : Ω → B
be a random variable (i.e. a measurable map). Then we denote by PX the Borel-
measure on B with the property that for all Borel-measurable sets A ⊆ B it holds
that

PX(A) = P
(
X−1(A)

)
and call it the law of X (image measure of X).

• Let (Ω1,F1, µ1),. . . ,(Ωn,Fn, µn) be measure spaces then we denote by

(Ω1 × · · · × Ωn,F1 ⊗ · · · ⊗ Fn, µ1 ⊗ · · · ⊗ µn)

the product measure space. In particular, F1 ⊗ · · · ⊗ Fn is the product σ-algebra,
which corresponds to the smallest σ-algebra generated by sets of the form A1×· · ·×
An and µ1 ⊗ · · · ⊗ µn is the product measure which satisfies

(µ1 ⊗ · · · ⊗ µn)(A1 × · · · ×An) = µ1(A1) · · ·µn(An).

In order to simplify notation the n-fold product of the space (Ω,F , µ) is denoted by

(Ωn,F⊗n, µ⊗n).
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2.1 Some functional analysis on Hilbert spaces

In this section we recall some reference material related to functional analysis on Hilbert
spaces. Most of the material is from the lecture notes of Jentzen (2015). All the material,
however, can also be found in Werner (2011) or Dunford and Schwartz (1963).

2.1.1 Nuclear operators
Definition 2.1 (nuclear operators)
Let H be a Hilbert space, and let A ∈ L(H) satisfy that there exist sequences (vn)n∈N, (wn)n∈N ⊆
H such that

∞∑
n=1

‖vn‖H‖wn‖H <∞

and such that for all x ∈ H it holds that

Ax =

m∑
n=1

〈vn, x〉Hwn.

Then, A is called a nuclear operator.

Next, we define the space

L1(H) := {A ∈ L(H) | A is nuclear operator}

of nuclear operators and define a norm on L1(H) as follows

‖A‖1 := inf

{
a ∈ R

∣∣∣ ∃(vn)n∈N, (wn)n∈N ⊆ H s.t.

(
a =

∞∑
n=1

‖vn‖H‖wn‖H and Ax =

m∑
n=1

〈vn, x〉Hwn ∀x ∈ H
)}
.

The following theorem shows that the space L1(H) has a separable Banach space struc-
ture.
Theorem 2.2 (structure of L1(H))
Let H be a separable Hilbert space, then the space L1(H) is a separable Banach space.

Proof We only give a short outline of the proof. The fact that L1(H) forms a Banach
space is a classical result and can be found in Werner (2011, Satz VI.5.3). To see sepa-
rability, observe that the space of finite rank operators is dense in L1(H). It is therefore
sufficient to show that the space of finite rank operators is separable. To this end let
(ϕn)n∈N be an orthonormal basis of H. Then, the set given by

A =


m∑

i,j=1

aijϕi ⊗ ϕj | aij ∈ Q,m ∈ N


is a countable set. Furthermore, it can be shown that any finite rank operator can be
approximated by elements in A. This completes the outline of the proof of Theorem 2.2.�
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Next, we introduce the trace operator.

Definition 2.3 (trace)
Let H be a Hilbert space, assume B ⊆ H is an orthonormal basis of H and let A ∈ L(H).
Then, the trace of A is given by

trace(A) :=
∑
b∈B
〈b, Ab〉H.

It can be shown (e.g. Werner, 2011, Section VI.5) that the trace is independent of the
chosen orthonoromal basis. Furthermore, for an operator A ∈ L(H), it holds that

trace(|A|) < ∞ if and only if A ∈ L1(H), where |A| = (A∗A)
1
2 . This is the reason

nuclear operators are often referred to as trace class operators. Moreover, it then holds
that

trace(|A|) = ‖A‖1.

2.1.2 Hilbert-Schmidt operators
Definition 2.4 (Hilbert-Schmidt operator)
Let H be a Hilbert space, and let A ∈ L(H) satisfy that there exists an orthonormal basis
B ⊆ H of H such that ∑

b∈B
‖Ab‖2H <∞.

Then, A is called a Hilbert-Schmidt operator.

Moreover, we define the space

HS(H) := {A ∈ L(H) | A is Hilbert-Schmidt operator}

of Hilbert-Schmidt operators.

Given operators A,B ∈ HS(H) and an orthonormal basis B ⊆ H, it can be shown (e.g.
Werner, 2011, Satz VI.6.2) that the mapping defined by

〈A,B〉2 :=
∑
b∈B
〈Ab,Bb〉H.

is independent of the orthonormal basis B and thus a well defined inner product on HS(H).
Furthermore, it induces the norm

‖A‖2 =

(∑
b∈B
‖Ab‖2H

) 1
2

and turns HS(H) into a separable Hilbert space.
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2.1.3 Covariance operator

In this section we introduce the covariance operator. For our purposes the non-centered
version is sufficient, but the same results also hold for the centered version.

Definition 2.5 (non-centered covariance operator)
Let H be a Hilbert space and let µ ∈ P(H) satisfy that for all w ∈ H it holds that∫
H|〈w, v〉H|

2 µ(dv) <∞. Then we denote by CovOp(µ) ∈ L(H) the unique bounded linear
operator such that for all v, w ∈ H it holds that

〈v,CovOp(µ)Hw〉 =

∫
H
〈v, x〉H〈x,w〉H µ(dx).

Given an H-valued random variable X on some probability space (Ω,F ,P) with the prop-
erty that for all w ∈ H it holds that E

(
|〈X,w〉H|

2
)
<∞, we denote by CovOp(X) ∈ L(H)

the operator defined by
CovOp(X) := CovOp(PX ).

The following example illustrates that the covariance operator is simply an extension of
the covariance matrix in finite dimensions.

Example 2.6 (covariance operator in finite dimensions)
Consider an Rn-valued random variable X with law PX. Then the non-centered covariance
matrix is given by

Σ := E
(
XX>

)
,

and therefore it holds for all v,w ∈ Rn that

〈v,Σw〉Rn = v>Σw

= v>E
(
XX>

)
w

= E
(
v>XX>w

)
= E

(
〈v,X〉Rn〈X,w〉Rn

)
=

∫
Rn
〈v,x〉Rn〈x,w〉Rn P

X(dx).

This immediately implies that
CovOp(X) = Σ.

The (non-centered) covariance operator satisfies the following properties (e.g. Da Prato
and Zabczyk, 2014, Section 1.2).

Lemma 2.7 (properties of the covariance operator)
Let H be a Hilbert space and X ∈ L2(P, ‖·‖H). Then it holds that

(i) CovOp(X) is a symmetric, non-negative, nuclear operator,
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(ii) CovOp(X) = E (X ⊗X) and

(iii) ‖CovOp(X)‖1 = E
(
‖X‖2H

)
.

2.1.4 Spectral Theory

Definition 2.8 (point spectrum)
Let B be a Banach space and let A ∈ L(B), then we set

σp (A) = {λ ∈ C | (λ−A) is not injective}

and call this set the point spectrum of A.

Definition 2.9 (symmetric operator)
Let H be a Hilbert space and let A ∈ L(H) satisfying for all x, y ∈ H that

〈x,Ay〉H = 〈Ax, y〉H.

Then, A is called symmetric (selfadjoint).

It is straight forward to check that for a symmetric operator A ∈ L(H) it holds that
σp(A) ⊆ R.

Definition 2.10 (compact operator)
Let B be a Banach space and let A ∈ L(B) satisfying for every boundend set B ∈ B that
A(B) is relatively compact in B, i.e. A(B) is a compact subset of B. Then, A is called a
compact operator.

We denote by
K(B) := {A ∈ L(B) | A is a compact operator}

the space of compact operators. It is straightforward to see that every nuclear operator
is a Hilbert-Schmidt operator. In Dunford and Schwartz (1963, Theorem 6, Section 6) it
is furthermore shown that every Hilbert-Schmidt operator is a compact operator. This
leads to the following relations,

L1(B) ⊆ HS(B) ⊆ K(B). (2.2)

The following theorem is a version of the famous spectral theorem for compact operators.
It is taken from Werner (2011, Theorem VI.3.2).

Theorem 2.11 (spectral theorem for compact operators)
Let H be a Hilbert space and A ∈ K(H) a symmetric operator. Then there exists an at most
countable index set I ⊆ N, an orthonormal system (ei)i∈I ⊆ H and a set (λi)i∈I ⊆ R\{0},
such that limi→∞ λi = 0 (if |I| =∞) and

H = ker(A)⊕ span{ei | i ∈ I}.
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Moreover, for all x ∈ H it holds that

Ax =
∑
i∈I

λi〈x, ei〉Hei.

In particular, this means that (λi)i∈I are the eigenvalues of A different from 0 and (ei)i∈I
are the corresponding eigenfunctions.

Let H a Hilbert space, A ∈ L1(H) and B ∈ HS(H). Then the spectral theorem together
with (2.2) allows us to represent A and B in terms of their eigenvalues as

Ax =
∑
i∈I

λi〈x, ei〉Hei and Bx =
∑
i∈I′

νi〈x, fi〉Hfi.

Using the orthonormality of the eigenfunctions this implies that the norms can be ex-
pressed as

‖A‖1 =
∑
i∈I
|λi| and ‖B‖2 =

(∑
i∈I′
|νi|2

) 1
2

.

2.2 Kernel methods

The aim of this section is to give a short introduction to reproducing kernel Hilbert spaces
and present the notation that is used in the following chapters. It is mostly based on
Peters (2008) and Berlinet and Thomas-Agnan (2004).

2.2.1 Kernels

We begin by introducing kernels, which form the building block of reproducing kernel
Hilbert spaces.

Definition 2.12 (kernel)
Let X be a set, then a function k : X ×X → R which is symmetric in its input arguments
is called a (symmetric) kernel on X .

Definition 2.13 (Gram matrix)
Let X be a set, let m ∈ N, let k be a kernel on X and x1, . . . , xm ∈ X , then the matrix
K ∈ Rm×m satisfying for all i, j ∈ {1, . . . ,m} that

Kij = k(xi, xj)

is called the Gram matrix of the kernel k (given observations x1, . . . , xm).

Definition 2.14 (positive semi-definite matrix)
Let X be a set, let m ∈ N, then a symmetric matrix K ∈ Rm×m is called positive semi-
definite if for all z ∈ Rm it holds that

z>Kz ≥ 0.
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Definition 2.15 (positive semi-definite kernel)
Let X be a set, then a kernel k on X is called positive semi-definite if for all m ∈ N
and for all x1, . . . , xm ∈ X the Gram matrix K of the kernel k given the observations
x1, . . . , xm is positive semi-definite.

The following list of functions are common examples of positive semi-definite kernels on
X = Rn.

• Gaussian kernel with bandwith σ > 0,

k(x, y) = exp

(
−
‖x− y‖2Rn

2σ2

)

• polynomial kernel of degree d ∈ N,

k(x, y) = 〈x, y〉dRn

• sigmoid kernel with κ > 0 and θ < 0,

k(x, y) = tanh (κ〈x, y〉Rn + θ) .

2.2.2 Reproducing kernel Hilbert spaces

Definition 2.16 (space of real-valued functions on X )
Let X be a set. Then the space

F(X ) = {f : X → R | f is a function}

together with the standard scalar multiplication and summation defined for all λ ∈ R, and
for all f, g ∈ F(X ) by

(λ · f)(x) := λf(x) ∀x ∈ X
(f + g)(x) := f(x) + g(x) ∀x ∈ X

forms a linear space over R. We call F(X ) the space of real-valued functions on X .

Reproducing kernel Hilbert spaces on X are well-behaved subspaces of F(X ). This is
made precise in the following definition.

Definition 2.17 (Reproducing kernel Hilbert space)
Let X be a set, let H ⊆ F(X ) be a Hilbert space. Then H is called a reproducing kernel
Hilbert space (RKHS) if there exists a kernel k on X satisfying

(i) ∀x ∈ X : k(x, ·) ∈ H and

(ii) ∀f ∈ H, ∀x ∈ X : 〈f, k(x, ·)〉H = f(x).

Moreover, we call k a reproducing kernel of H.
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In order to get a better understanding of this definition we go over several consequences
and properties of reproducing kernel Hilbert spaces.

The next proposition shows that reproducing kernels are unique.

Proposition 2.18 (uniqueness of the kernel)
Let X be a set and let H be an RKHS on X . Assume both k and k̃ are reproducing kernels
of H. Then k = k̃.

Proof Observe that by the properties of a reproducing kernel it holds for all x, y ∈ X
that

k(x, y) = 〈k(x, ·), k̃(y, ·)〉H = 〈k̃(y, ·), k(x, ·)〉H = k̃(y, x) = k̃(x, y)

which completes the proof of Proposition 2.18. �

The following theorem gives an alternative characterization of RKHS (e.g. Berlinet and
Thomas-Agnan, 2004, Theorem 1).

Theorem 2.19 (alternative characterization)
Let X be a set and for all x ∈ X let δx : F(X ) → R be the function with the property
that for all f ∈ F(X ) it holds that δx(f) = f(x). Then, a Hilbert space H ⊆ F(X ) is a
reproducing kernel Hilbert space if and only if for each x ∈ X the function δx is continuous
on H.

Proof Assume H is an RKHS with reproducing kernel k, then for all f ∈ H and all
x ∈ X it holds that

δx(f) = 〈f, k(x, ·)〉H
which implies that δx is a linear. Together with the Cauchy-Schwarz inequality we also
have

|δx(f)| = |〈f, k(x, ·)〉H| ≤ ‖f‖H‖k(x, ·)‖H = ‖f‖H [k(x, x)]
1
2 .

Furthermore notice that for f = k(x, ·) the upper bound is achieved which implies that

‖δx‖ = sup
‖f‖H 6=0

|δx(f)|
‖f‖H

= [k(x, x)]
1
2 .

Therefore δx is continuous.

Conversely assume δx is continuous for all x ∈ X . Then for fixed x ∈ X by Riesz’s
representation theorem there exists a function Φx ∈ H such that for all f ∈ H it holds
that

〈f,Φx〉H = δx(f) = f(x).

Since this holds for all x ∈ X we can set for all x, y ∈ X , k(x, y) = Φx(y) which is a
reproducing kernel on H, which implies that H is an RKHS. This completes the proof of
Theorem 2.19. �

Proposition 2.20 (reproducing kernels are positive semi-definite)
Let X be a set and let H be an RKHS with reproducing kernel k. Then k is positive
semi-definite.
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Proof Let x1, . . . , xm ∈ X and let z ∈ Rm, then

z>Kz =
m∑
i=1

m∑
j=1

k(xi, xj)zizj

=

m∑
i=1

m∑
j=1

〈zik(xi, ·), zjk(xj , ·)〉H

=

〈 m∑
i=1

zik(xi, ·),
m∑
j=1

zjk(xj , ·)
〉
H

=

∥∥∥∥ m∑
i=1

zik(xi, ·)
∥∥∥∥
H

≥ 0

which completes the proof of Proposition 2.20. �

The next theorem shows that the reverse of the above proposition is in fact also true,
which in particular proves the existence of non-trivial reproducing kernel Hilbert spaces.
The proof is very constructive and illustrates how an RKHS can be constructed from a
positive semi-definite kernel (e.g. Peters, 2008, Proposition 3.10).

Theorem 2.21 (positive semi-definite kernels induce RKHS)
Let X be a set and k a positive semi-definite kernel on X , then there exists an RKHS on
X with reproducing kernel k.

Proof Define the space

H0 =

{
f : X → R | f =

m∑
i=1

αik(xi, ·) for some m and some αi ∈ R

}
Then for f =

∑m
i=1 αik(xi, ·) and g =

∑n
j=1 βjk(yj , ·) define the function 〈·, ·〉 : H0×H0 →

R by

〈f, g〉 =
m∑
i=1

n∑
j=1

αiβjk(xi, yj)

=
m∑
i=1

αig(xi)

=
n∑
j=1

βjf(yj).

The last two identities show that the expression does not depend on the expansion of f or
g. Therefore, 〈·, ·〉 is well-defined. Furthermore it is symmetric and bilinear. It is positive
semi-definite, since

〈f, f〉 =
m∑

i,j=1

αiαjk(xi, xj) ≥ 0.
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Using a generalized version of the Cauchy-Schwarz in equality for symmetric positive
semi-definite bilinear forms, it follows for all x ∈ X that

f(x)2 = 〈f, k(·, x)〉2 ≤ 〈f, f〉k(x, x)

and hence 〈f, f〉 = 0 implies that f = 0. So we have shown that 〈·, ·〉 is an inner product.

Finally let H be the completion of H0, i.e. H is a Hilbert space containing a dense
subspace which is isometric with H0. Now observe that given a sequence (fi)i∈N ⊆ H0

converging to f ∈ H it holds for all x ∈ X and all i, j ∈ N that

|fi(x)− fj(x)| = |〈k(x, ·), fi − fj〉| ≤
√
k(x, x)‖fi − fj‖.

This implies that norm convergence in H0 implies pointwise convergence. Therefore we
get

〈f, k(x, ·)〉 = 〈 lim
i→∞

fi, k(x, ·)〉

= lim
i→∞
〈fi, k(x, ·)〉

= lim
i→∞

fi(x)

= f(x).

This implies that the reproducing property also holds for H which completes the proof of
Theorem 2.21. �

Given an RKHS, it is of interest whether one can achieve more regularity of the RKHS
by making further assumptions on the space X and on the kernel k. The next theorem
gives one such result (e.g. Berlinet and Thomas-Agnan, 2004, Corollary 4).

Theorem 2.22 (separability and continuity)
Let X be a separable metric space, let k be a continuous, bounded and positive semi-
definite kernel on X and let H be the RKHS with reproducing kernel k. Then, H is
separable Hilbert space consisting only of continuous functions. Furthermore, given an
orthonormal basis (ϕn)n∈N of H it holds for all x, y ∈ X that

k(x, y) =

∞∑
n=1

ϕn(x)ϕn(y).

The Gaussian kernel on Rn satisfies all these conditions, therefore the associated RKHS
is a separable Hilbert space consisting only of continuous functions.

2.2.3 Tensor products of RKHS

In this section we collect some basic facts about tensor products of RKHS and introduce
the notation that is used later in this work. A short introduction to tensor products is
given in Appendix A.2.
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For j ∈ {1, . . . , d}, let X j be a separable metric space and denote byX = X 1×· · ·×X d the
product space. Moreover for j ∈ {1, . . . , d}, let kj be a continuous bounded positive semi-
definite kernel on X j and denote by Hj the corresponding RKHS. Let k = k1 ⊗ · · · ⊗ kd
be the tensor product of the kernels kj and H = H1⊗ · · · ⊗Hd the tensor product of the
RKHS Hj . Then, by Theorem A.5 it holds that H is an RKHS on X with reproducing
kernel k.

The following properties will be heavily used in later calculations. They are immediate
from the definitions,

(i) for all x,y ∈ X it holds that

k(x,y) = k1(x1, y1) · · · kd(xd, yd)

(ii) for all f = f1 ⊗ · · · ⊗ fd ∈H and for all g = g1 ⊗ · · · ⊗ gd ∈H it holds that

〈f ,g〉H = 〈f1, g1〉H1 · · · 〈fd, gd〉Hd

(iii) for all f = f1 ⊗ · · · ⊗ fd ∈H it holds that

‖f‖H = ‖f1‖H1 · · · ‖fd‖Hd .

Moreover, (i) immediately implies that k inherits the boundedness and continuity of the
kernels k1, . . . , kd.

2.2.4 Embedding of distributions

One of the strengths of RKHS is that we can embed complicated objects into them and
use the Hilbert space structure to analyze them. Being able to express inner products
as function evaluations via the reproducing property, additionally simplifies computation
within an RKHS. In this work, we use this embedding technique to analyze distributions.

Definition 2.23 (space of finite Borel measures)
Let X be a separable metric space, then define

Mf (X ) := {µ | µ is a finite Borel measure on X}.

Using the Bochner integral (see Appendix A.3) we can define an embedding of Mf (X )
into an RKHS.
Definition 2.24 (mean embedding function)
Let X be a separable metric space, let k be a continuous bounded positive semi-definite
kernel and let H be the RKHS with reproducing kernel k. Then, let Π :Mf (X ) → H be
the function with the property that for all µ ∈Mf (X ) it holds that

Π(µ) =

∫
X
k(x, ·)µ(dx).

We call Π the mean embedding (associated to k).
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Observe that the Bochner integral in this definition is well-defined since k(x, ·) is contin-
uous and bounded and therefore in particular in L1 (µ, ‖·‖H).

In order to infer that two distributions are equal given that their embeddings coincide, it
is necessary that the mean embedding is injective. Similar to Sriperumbudur et al. (2008)
we make the following definition.

Definition 2.25 (characteristic kernel)
Let X be a separable metric space, let k be a continuous bounded positive semi-definite
kernel, let H be the RKHS with reproducing kernel k and let Π : Mf (X ) → H be the
mean embedding. We say that k is characteristic if Π is injective.

The Gaussian kernel on Rn is a commonly used example of a characteristic kernel.

2.3 U-statistics and V-statistics

U-and V-statistics play a crucial role in constructing hypothesis tests based on the Hilbert-
Schmidt independence criterion. This section aims at providing a complete overview of
all results necessary from this theory. Most of this section in particular everything related
to U-statistics, is based on Serfling (1980). The corresponding results about V-statistics
are extensions of the U-statistic results.

Throughout this section we will heavily use the following setting.

Setting 2.26 (U-and V-statistic)
Let m ∈ N, q ∈ {1, . . . ,m}, X a metric space, (Ω,F ,P) a probability space, X : Ω→ X a
random variable with law PX and (Xi)i∈N a sequence of iid copies of X, i.e., (Xi)i∈N

iid∼
PX .

The sequence (Xi)i∈N should be seen as the generating process of observations. Thus we
can interpret a realization (xi)i∈N ⊆ X of (Xi)i∈N as one particular experimental outcome.

Furthermore, define the sets

• Cq(m) := {(i1, . . . , iq) ∈ {1, . . . ,m} : i1 < · · · < iq} (all combinations),

• Pq(m) := {(i1, . . . , iq) ∈ {1, . . . ,m} : i1, . . . , iq distinct} (all permutations) and

• Mq(m) := {1, . . . ,m}q (all mappings).

Observe that |Cq(m)| =
(
m
q

)
, |Pq(m)| = (m)q := m!

(m−q)! and |Mq(m)| = mq.

Consider a measurable symmetric (i.e. invariant under any permutation of its input
arguments) function g : X q → R. Suppose we are interested in the statistical functional

θg := θg
(
PX
)

:= E (g(X1, . . . , Xq)) . (2.3)

To this end we define three estimators: The U-statistic

Um(g) :=

(
m

q

)−1 ∑
Cq(m)

g(Xi1 , . . . , Xiq), (2.4)
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the alternative U-statistic

U∗m(g) :=
1

(m)q

∑
Pq(m)

g(Xi1 , . . . , Xiq), (2.5)

and the V-statistic
Vm(g) :=

1

mq

∑
Mq(m)

g(Xi1 , . . . , Xiq). (2.6)

Due to the symmetry of g both Um(g) and U∗m(g) are unbiased estimators of the statistical
functional θg (hence the name U-statistic). In particular it holds that Um(g) = U∗m(g).
The V-statistic Vm(g) on the other hand has a bias due to the occurrence of equal indices
in Mq(m). The function g is commonly referred to as a kernel function. In order to avoid
confusion, we refer to g as a core function.

Both U-and V-statistics are important. For practical applications, it is generally easier
to work with V-statistics because the sets Cq(m) and Pq(m) become quite complicated
for q > 2. Whenever deriving theoretical results, however, it turns out to be easier to
first consider U-statistics and then deduce the corresponding result for V-statistics.

To illustrate these definitions consider the following example.

Example 2.27 (sample variance)
Let X = R and consider a sequence of iid real-valued random variables (Xi)i∈N and the
core function g : R2 → R defined for all x, y ∈ R by

g(x, y) :=
(x+ y)2

2
=
x2 + y2

2
− xy.

The V-statistic corresponding to g satisfies

Vm(g) =
1

m2

m∑
i,j=1

X2
i +X2

j

2
− 1

m2

m∑
i,j=1

XiXj

=
1

m

m∑
i=1

X2
i −

(
1

m

m∑
i=1

Xi

)2

=
1

m

m∑
i=1

Xi −
1

m

m∑
j=1

Xj

2

.

Hence, the V-statistic Vm(g) corresponds to the biased sample variance. Performing a
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similar calculation for the alternative U-statistic corresponding to g leads to

U∗m(g) =
1

m(m− 1)

∑
i 6=j

X2
i +X2

j

2
− 1

m(m− 1)

∑
i 6=j

XiXj

=
1

m(m− 1)

m∑
i,j=1

X2
i +X2

j

2
− 1

m(m− 1)

m∑
i,j=1

XiXj

=
1

m− 1

m∑
i=1

X2
i −

m

m− 1

(
1

m

m∑
i=1

XiXj

)2

=
1

m− 1

m∑
i=1

Xi −
1

m

m∑
j=1

Xj

2

.

Thus, the alternative U-statistic U∗m(g) and consequently also the standard U-statistic
Um(g) correspond to the classical unbiased sample variance.

Given a non-symmetric core function g one can always construct the symmetrized version

ĝ(x1, . . . , xq) =
1

q!

∑
π∈Sq

g(xπ(1), . . . , xπ(q)),

where Sq is the set of permutations on {1, . . . , q}.

In the following subsections we derive some useful properties of these statistics, which we
will exploit later when deriving asymptotic properties of our mutual independence tests.

• Section 2.3.1: Variance of U-statistics

• Section 2.3.2: Method to analyze asymptotic properties of U-statistics

• Section 2.3.3: Consistency of U-statistics

• Section 2.3.4: Asymptotic distribution of U-statistics

• Section 2.3.5: Connection between U-statistics and V-statistics

• Section 2.3.6: Consistency of V-statistics

• Section 2.3.7: Variance of V-statistics

• Section 2.3.8: Bias of V-statistics

• Section 2.3.9: Asymptotic distribution of V-statistics

• Section 2.3.10: Resampling results for U-statistics and V-statistics

2.3.1 Variance of U-statistics

Following Serfling (1980) we introduce the following notation, which becomes useful when
proving results about U-statistics.
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Assume g ∈ L1((PX)⊗q, |·|R) is a symmetric core function. We then define for every
c ∈ {1, . . . , q − 1} the function gc : X c → R by

gc(x1, . . . , xc) := E (g(x1, . . . , xc, Xc+1, . . . , Xq))

and gq ≡ g. gc is again a symmetric core function such that for every c ∈ {1, . . . , q − 1},
it holds that

gc(x1, . . . , xc) = E (gc+1(x1, . . . , xc, Xc+1))

and
E (gc(X1, . . . , Xc)) = E (g(X1, . . . , Xq)) = θg.

Further define g̃ ≡ g − θg and for all c ∈ {1, . . . , q} define g̃c ≡ gc − θg to be the centered
versions of the core functions.

Define for every c ∈ {1, . . . , q},

ξc := Var (gc(X1, . . . , Xc)) = E
(
g̃c(X1, . . . , Xc)

2
)
. (2.7)

We sometimes write ξc(g) to make clear which core function we are talking about.

We can now state the main theorem of this section (see Serfling, 1980, Lemma A, Section
5.2.1) which was originally proved by Hoeffding (1948a).

Theorem 2.28 (variance of a U-statistic)
Assume Setting 2.26 and let g ∈ L2((PX)⊗q, |·|R) be a symmetric core function. The
variance of Um(g) is given by

Var (Um(g)) =

(
m

q

)−1 q∑
c=1

(
q

c

)(
m− q
q − c

)
ξc. (2.8)

Proof Let (i1, . . . , iq), (j1, . . . , jq) ∈ Cq(m) such that the two sequences have exactly c
common values. Denote by (a1, . . . , aq) the reordering of (i1, . . . , iq) and by (b1, . . . , bq)
the reordering of (j1, . . . , jq) such that for all k ∈ {1, . . . , c} it holds that ak = bk. Then
using symmetry of g̃ and independence of X1, . . . , Xm it holds that

E
(
g̃
(
Xi1 , . . . , Xiq

)
g̃
(
Xj1 , . . . , Xjq

))
= E

(
g̃
(
Xa1 , . . . , Xaq

)
g̃
(
Xb1 , . . . , Xbq

))
= E (g̃c (Xa1 , . . . , Xac) g̃c (Xb1 , . . . , Xbc))

= E
(
g̃c (Xa1 , . . . , Xac)

2
)

= ξc

Now observe that the number of distinct ways two such sequences (i1, . . . , iq) and (j1, . . . , jq)
can be chosen is

(
m
q

)(
q
c

)(
m−q
q−c
)
. Hence using

Um(g)− θg =

(
m

q

)−1 ∑
Cq(m)

g̃(Xi1 , . . . , Xiq)
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we get

Var (Um(g)) = E
(

(Um(g)− θg)2
)

=

(
m

q

)−2 ∑
Cq(m)

∑
Cq(m)

E
(
g̃(Xi1 , . . . , Xiq)g̃(Xj1 , . . . , Xjq)

)
=

(
m

q

)−1 q∑
c=1

(
q

c

)(
m− q
q − c

)
ξc

which completes the proof of Theorem 2.28. �

2.3.2 Projection of U-statistics

This section introduces the projection of a U-statistic, which is a technique to determine
asymptotic results about U-statistics. Given a U-statistic Um(g) we define its projection
by

Ûm(g) :=

m∑
j=1

E (Um(g) | Xj)− (m− 1)θg. (2.9)

Observe that E
(
g(Xi1 , . . . , Xiq) | Xj

)
is equal to θg if j /∈ {i1, . . . , iq} and it is equal to

g1(Xj) otherwise. Hence we get,

E (Um(g) | Xj) =

(
m

q

)−1 ∑
Cq(m)

E
(
g(Xi1 , . . . , Xiq) | Xj

)
=

(
m

q

)−1(m− 1

q

)
θg +

(
m

q

)−1(m− 1

q − 1

)
g1(Xj)

=
m− q
m

θg +
q

m
g1(Xj).

This results in

Ûm(g)− θg =
q

m

m∑
j=1

g̃1(Xj). (2.10)

Therefore, we have shown that the projection of a U-statistic is a sum of iid random
variables. This fact allows us to apply results such as the central limit theorem or the
law of large numbers to these projections. In order to connect such results back to the
original U-statistic we use the following theorem (for a stronger version see Serfling, 1980,
Theorem, Section 5.3.2).

Theorem 2.29 (second moment of Um(g)− Ûm(g))
Assume Setting 2.26 and let g ∈ L2((PX)⊗q, |·|R) be a symmetric core function. Then

E
[(
Um(g)− Ûm(g)

)2
]

= O
(
m−2

)
as m→∞.
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Proof Set
w(x1, . . . , xq) = g(x1, . . . , xq)− g̃1(x1)− · · · − g̃1(xq)− θg

and observe that this is a symmetric core function with the property that

E (w(X1, . . . , Xq)) = E (w(X1, . . . , Xq) | X1) = 0.

In particular, this implies ξ1(w) = 0. Using that(
m

q

)−1 ∑
Cq(m)

q∑
l=1

g̃1(Xil) =

(
m

q

)−1(m− 1

q − 1

) m∑
l=1

g̃1(Xl)

and (2.10) it follows that

Um(g)− Ûm(g) =

(
m

q

)−1 ∑
Cq(m)

w(Xi1 , . . . , Xiq).

This means that Um(g)− Ûm(g) = Um(w) and we are in the setting where we can apply
Theorem 2.28. This together with ξ1(w) = 0 results in

E
[(
Um(g)− Ûm(g)

)2
]

= Var
(
Um(g)− Ûm(g)

)
=

(
m

q

)−1 q∑
c=1

(
q

c

)(
m− q
q − c

)
ξc(w)

= O
(
m−2

)
,

which completes the proof of Theorem 2.29. �

Remark 2.30 The notion of projection can be generalized by defining the c-th order pro-
jection of a U-statistic Um(g) by

Ûc,m(g) :=
∑

Cc(m)

E (Um(g) | Xi1 , . . . , Xic)−
((

m

c

)
− 1

)
θg.

Then using similar reasoning as above one gets

Ûc,m(g) =
(q)c
(m)c

∑
Cc(m)

g̃c (Xi1 , . . . , Xic) + θg

and equivalent to Theorem 2.29 it holds that

E
[(
Um(g)− Ûm(g)

)2
]

= O
(
m−(c+1)

)
as m→∞.
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2.3.3 Consistency of U-statistics

The following theorem is a weaker version of Serfling (1980, Theorem A, Section 5.4).

Theorem 2.31 (consistency of a U-statistic)
Assume Setting 2.26 and let g ∈ L1((PX)⊗q, |·|R) be a symmetric core function. Then

Um(g)
P−→ θg

as m→∞.

Proof To prove this statement we make use of the projections introduced in Section 2.3.2.
Note that by (2.10) Ûm(g) is the sum of iid random variables and therefore we can apply
the weak law of large numbers to get,

Ûm(g)
P−→ θg

as m→∞. We then use Theorem 2.29 to get(
Ûm(g)− Um(g)

)
L2

−→ 0

as m→∞. Now since L2-convergence also implies convergence in probability we get

Um(g) = Ûm(g) +
(
Um(g)− Ûm(g)

)
P−→ θg

as m→∞ which completes the proof of Theorem 2.31. �

2.3.4 Asymptotic distributions of U-statistics

A U-statistic is called degenerate if ξ1 = Var(g1(X1)) = 0 and non-degenerate if ξ1 > 0.
In this section we analyze the asymptotic distribution of

•
√
mUm(g) for the non-degenerate case (ξ1 > 0) and

• mUm(g) for a special degenerate case (ξ1 = 0, ξ2 > 0).

In the degenerate case the asymptotic distribution depends on the eigenvalues of a partic-
ular integral operator. In order to avoid repeating its definition we introduce the following
setting.

Setting 2.32 (degenerate asymptotic)
Let g ∈ L2((PX)⊗q, |·|R) be a core function, let (Zj)j∈N be a sequence of independent
standard normal random variables on R, let Tg̃2 ∈ L

(
L2(PX , |·|R)

)
with the property that

for every f ∈ L2(PX , |·|R) and for every x ∈ X it holds that

(Tg̃2(f)) (x) =

∫
X
g̃2(x, y)f(y)PX (dy) (2.11)

and let (λj)j∈N be the eigenvalues of Tg̃2.
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Non-degenerate case

The following theorem is taken from Serfling (1980, Theorem A, Section 5.5.1).

Theorem 2.33 (asymptotic distribution of a U-statistic (non-degenerate))
Assume Setting 2.26, let g ∈ L2((PX)⊗q, |·|R) be a symmetric core function and assume
ξ1 > 0. Then it holds that

√
m (Um(g)− θg)

d−→ N
(
0, q2ξ1

)
(2.12)

as m→∞.

Proof To prove this statement we make use of the projections introduced in Section 2.3.2.
Note that by (2.10), Ûm(g) is the sum of iid random variables and therefore we applying
the central limit theorem together with Var(qg̃1(X1)) = q2ξ1 we get,

√
m
(
Ûm(g)− θg

)
d−→ N

(
0, q2ξ1

)
as m→∞.

Hence, it only remains to show that
√
mÛm(g) and

√
mUm(g) have the same limiting

distribution. By Theorem 2.29 it holds that

√
m
(
Ûm(g)− Um(g)

)
L2

−→ 0

as m → ∞. Now since L2-convergence also implies convergence in probability we may
apply Slutsky’s theorem to get that

√
m (Um(g)− θg) =

√
m
(
Ûm(g)− θg

)
+
√
m
(
Ûm(g)− Um(g)

)
d→ N

(
0, q2ξ1

)
as m→∞, which completes the proof of Theorem 2.33. �

Degenerate case

The following theorem is taken from Serfling (1980, Theorem, Section 5.5.2). The proof
is slightly modified using a different version Mercer’s Theorem.

Theorem 2.34 (asymptotic distribution of a U-statistic (degenerate))
Assume Setting 2.26 and Setting 2.32, let g ∈ L2((PX)⊗q, |·|R) be a symmetric core func-
tion and assume 0 = ξ1 < ξ2. Then it holds that

m (Um(g)− θg)
d−→
(
q

2

) ∞∑
j=1

λj
(
Z2
j − 1

)
as m→∞.
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Proof Using Remark 2.30 it is enough to show the result for the second order projection
of Ûm(g). So for (Zj)j∈N iid standard normal random variables defined on the same
probability space and Y =

∑∞
j=1 λj(Z

2
j − 1) we want to show

m
(
Û2,m(g)− θg

)
d−→ q(q − 1)

2
Y

as m→∞.

Begin by setting

Tm =
1

m

∑
P2(m)

g̃2 (Xi1 , Xi2)

and observe that
m
(
Û2,m(g)− θg

)
=
q(q − 1)

2

m

m− 1
Tm.

We have therefore reduced the problem to proving

Tm
d−→ Y

as m→∞. We do this by proving that for all x ∈ R it holds that

E
(
eixTm

)
−→ E

(
eixY

)
(2.13)

as m→∞ and then applying the continuity theorem for characteristic functions.

Begin by applying Mercer’s Theorem A.1 to g̃2 to get an orthonormal sequence of eigen-
functions (ϕj)j∈N and corresponding eigenvalues (λj)j∈N of Tg̃2 (see (2.11)) satisfying for
x, y ∈ supp(PX ) that

g̃2(x, y) =
∞∑
j=1

λjϕj(x)ϕj(y) (2.14)

converges uniformly. Hence, using that we can exchange sum and expectation due to the
uniform convergence we get for all x ∈ supp(PX ) that

g̃1(x) = E (g̃2(x,X1))

= E

 ∞∑
j=1

λjϕj(x)ϕj(X1)


=
∞∑
j=1

λjϕj(x)E (ϕj(X1)) (2.15)

where the sum again converges uniformly. Since ξ1(g) = 0 this implies g̃1(X1) = 0 P-a.s.
and thus for all j ∈ N that

E (ϕj(X1)) = 0. (2.16)
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Next using that (ϕj)j∈N are orthonormal and again using that we can exchange sum and
expectation we get

E
(
g̃2(X1, X2)2

)
= E

 ∞∑
j=1

∞∑
i=1

λjλiϕj(X1)ϕj(X2)ϕi(X1)ϕi(X2)


=

∞∑
j=1

∞∑
i=1

λjλiE (ϕj(X1)ϕi(X1))E (ϕj(X2)ϕi(X2))

=

∞∑
j=1

λ2
j . (2.17)

This in particular implies
∑∞

j=1 λ
2
j = E

(
g̃2(X1, X2)2

)
< ∞. Using the expansion (2.14)

it holds that

Tm =
1

m

∑
P2(m)

∞∑
j=1

λjϕj(Xi1)ϕj(Xi2).

Next, define

Tm,K =
1

m

∑
P2(m)

K∑
j=1

λjϕj(Xi1)ϕj(Xi2).

and

YK =

K∑
j=1

λj
(
Z2
j − 1

)
.

The rest of the proof will be separated into four parts. The first part deals with the
approximation of Tm by Tm,K , the second part deals with the approximation of YK by
Tm,K , the third part deals with the approximation of Y by YK and the fourth part
combines these results to conclude the proof.

Part 1:

Using Jensen’s inequality and the inequality |eiz − 1| ≤ |z|, we get

|E
(
eixTm

)
− E

(
eixTm,K

)
| ≤ E|eixTm − eixTm,K |
≤ |x|E|Tm − Tm,K |

≤ |x|
[
E
(
(Tm − Tm,K)2

)] 1
2 . (2.18)

Due to the uniform convergence we can set

wK(x, y) =

∞∑
j=K+1

λjϕj(x)ϕj(y)

and observe that Tm − Tm,K can be written in terms of a U-statistic as

Tm − Tm,K =
2

m

(
m

2

)
Um(wK). (2.19)
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By uniform convergence and (2.16) it holds that E
(
wK(X1, X2)

)
= 0 which in turn

implies that
E
(
Um(wK)

)
= 0. (2.20)

Using this and again making use of uniform convergence it also holds that

ξ2(wK) = E
(
wK(X1, X2)2

)
=

∞∑
j=K+1

λ2
j . (2.21)

A similar argument together with (2.16) leads to E
(
wk(·, X1)

)
≡ 0 and hence

ξ1(wK) = EX1

[(
EX2

(
wk(X1, X2)

))2
]

= 0. (2.22)

We can now apply Theorem 2.28 together with (2.20), (2.21) and (2.22) to get

E
(
Um(wK)

)
=

(
m

2

)−1 ∞∑
j=K+1

λ2
j

and combined with (2.19) this results in

E
(
(Tm − Tm,K)2

)
=

2(m− 1)

m

∞∑
j=K+1

λ2
j ≤ 2

∞∑
j=K+1

λ2
j . (2.23)

Now, for arbitrary ε > 0 and x ∈ R we can choose K0(ε, x) ∈ N large enough such that
for all K > K0(ε, x) it holds that

|x|

2
∞∑

j=K+1

λ2
j

 1
2

< ε (2.24)

and therefore together with (2.18) and (2.23) it holds for all m ∈ N and all K > K0(ε, x)
that

|E
(
eixTm

)
− E

(
eixTm,K

)
| < ε. (2.25)

Part 2:

For this part set

Zjm = m−
1
2

m∑
i=1

ϕj(Xi)

and

Vjm = m−1
m∑
i=1

ϕj(Xi)
2.
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Next, observe that we can write

Tm,K =
K∑
j=1

λj
(
Z2
jm − Vjm

)
(2.26)

Using (2.16) it holds for all j,m ∈ N that

E (Zjm) = 0 (2.27)

and hence for all j, l,m ∈ N it holds that

Cov (Zjm, Zlm) = m−1
∑

M2(m)

E (ϕj(Xi1)ϕl(Xi2)) =

{
1, if j = l

0, if j 6= l
(2.28)

Therefore, using the multidimensional version of the central limit theorem, (2.27) and
(2.28) it holds that

(Z1m, . . . , ZKm)
d−→ N (0, IdK×K) (2.29)

as m → ∞. Furthermore, since for all j ∈ N it holds that E (ϕj(X1)) = 1, applying the
weak law of large numbers yields

(V1m, . . . , VKm)
P−→ (1, . . . , 1) (2.30)

as m→∞. Combining (2.26), (2.29) and (2.30) together with Slutsky’s theorem leads to

Tm,K
d−→ YK

as m → ∞. Hence, for arbitrary ε > 0 and x ∈ R we can choose m0(ε, x) ∈ N large
enough such that for all m > m0(ε, x) it holds that

|E
(
eixTm,K

)
− E

(
eixYK

)
| < ε. (2.31)

Part 3:

By using Jensen inequality, the inequality |eiz− 1| ≤ |z| and the independence of (Zj)j∈N
it holds for any x ∈ R that

|E
(
eixY

)
− E

(
eixYK

)
| ≤ E|eixY − eixYK |

≤ |x|
[
E
(
(Y − YK)2

)] 1
2

≤ |x|
[
E
(
(Z1 − 1)2

)] 1
2

 ∞∑
j=K+1

λ2
j

 1
2

.

So for arbitrary ε > 0 and x ∈ R we can choose K1(ε, x) ∈ N large enough such that for
all K > K1(ε, x) it holds that

|E
(
eixY

)
− E

(
eixYK

)
| < ε. (2.32)
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Part 4:

Finally combining (2.25), (2.31) and (2.32) it holds for all ε > 0 and all x ∈ R that for
all m > m0(ε, x) and all K > max{K0(ε, x),K1(ε, x)} it holds that

|E
(
eixY

)
− E

(
eixTm

)
| ≤ |E

(
eixY

)
− E

(
eixYK

)
|+ |E

(
eixYk

)
− E

(
eixTmK

)
|

+ |E
(
eixTm,K

)
− E

(
eixTm

)
|

< 3ε

This completes the proof of Theorem 2.34. �

2.3.5 Connection between U-statistics and V-statistics

To derive the asymptotic distribution of V-statistics we show that V-statistics are in an
appropriate sense good approximations of U-statistics. In order to show results of this
type we require some kind of boundedness condition on the core function. The next
definition introduces such a condition.
Definition 2.35 (total boundedness condition)
Let r ∈ N, assume Setting 2.26 and let g ∈ Lr((PX)⊗q, |·|R) be a core function. Then we
say that g satisfies the total boundedness condition of order r if for all (i1, . . . , iq) ∈Mq(q)
it holds that

E
[
|g(Xi1 , . . . , Xiq)|

r] <∞.
In particular, this condition is fulfilled if the core function g is a bounded function.

The following result is due to Serfling (1980, Lemma, Section 5.7.3).

Lemma 2.36 (connection between U-and V-statistics)
Let r ∈ N, assume Setting 2.26 and let g ∈ Lr((PX)⊗q, |·|R) be a core function satisfying
the total boundedness condition of order r. Then it holds that

E [|Um(g)− Vm(g)|r] = O
(
m−r

)
as m→∞.

Proof Set
Wm(g) =

1

mq − (m)q

∑
Mq(m)\Pq(m)

g(Xi1 , . . . , Xiq)

and observe that

mqVm(g) =
∑

Mq(m)

g(Xi1 , . . . , Xiq)

=
∑

Pq(m)

g(Xi1 , . . . , Xiq) +
∑

Mq(m)\Pq(m)

g(Xi1 , . . . , Xiq)

= (m)qU
∗
m(g) + (mq − (m)q)Wm(g)

= (m)qUm(g) + (mq − (m)q)Wm(g).
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Therefore it holds that,

mq (Vm(g)− Um(g)) = (m)qUm(g) + (mq − (m)q)Wm(g)−mqUm(g)

= (mq − (m)q) (Wm(g)− Um(g)) .

Next combining this result with Minkowski’s inequality leads to

E [|Vm(g)− Um(g)|r] =

(
mq − (m)q

mq

)r
E [|Wm(g)− Um(g)|r]

≤
(
mq − (m)q

mq

)r [
(E [|Wm(g)|r])

1
r + (E [|Um(g)|r])

1
r

]r
.

Now noting that (mq − (m)q) = O
(
mq−1

)
as m→∞ and using that g satisfies the total

boundedness condition we end up with

E [|Vm(g)− Um(g)|r] = O
(
m−r

)
,

which completes the proof of Lemma 2.36. �

In order to prove some of the asymptotic statements of V-statistics we require a stronger
way of comparing V-statistics with U-statistics than that given in Lemma 2.36. For
example, when computing the asymptotic variance of a V-statistic up to an order of
m−2 by comparison with the variance of a U-statistic, we need to estimate the second
moment of the difference to an order of m−(2+ε). Hence, the result in Lemma 2.36 is not
sufficient. The following technical lemma gives a decomposition of a V-statistic into the
corresponding U-statistic and some remainder terms. We are not aware of a similar result
in literature.
Lemma 2.37 (decomposition of a V-statistic)
Assume Setting 2.26 and let g ∈ L1((PX)⊗q, |·|R) be a core function. For all k ∈ {1, . . . , q−
1}, l ∈ {k+1, . . . , q} let πkl : {1, . . . , q} → {1, . . . , q−1} be the unique surjective functions
with the property that πkl(k) = πkl(l) = 1 and for all i, j ∈ {1, . . . , q} \ {k, l} with i < j
it holds that πkl(i) < πkl(j). Define for all x1, . . . , xq−1 ∈ X the function

w(x1, . . . , xq−1) :=

q−1∑
k=1

q∑
l=k+1

g(xπkl(1), . . . , xπkl(q)).

and set B := {(i1, . . . , iq) ∈Mq(m) | at most q − 2 distinct values}. Then it holds that

mVm(g) =
(
1 +O

(
m−1

))
Um(w)

+
(
1 +O

(
m−1

)) 1

(m)q−1

∑
B

g(Xi1 , . . . , Xiq)

−
((

q

2

)
+O

(
m−1

))
Um(g)

+mUm(g)

and |B| = O
(
mq−2

)
as m→∞.
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Proof We begin by introducing

Sm =
1

(m)q−1

 ∑
Mq(m)

g(Xi1 , . . . , Xiq)−
∑

Pq(m)

g(Xi1 , . . . , Xiq)


and

A = {(i1, . . . , iq) ∈Mq(m) | at most q − 1 distinct values}.

Then, observe that A = Mq(m) \Pq(m) and

A \B = {(i1, . . . , iq) ∈Mq(m) | exactly q − 1 distinct values}

=

{(
iπkl(1), . . . , iπkl(q)

) ∣∣∣ (i1, . . . , iq−1) ∈ Pq−1(m),

k ∈ {1, . . . , q − 1}, l ∈ {k + 1, . . . , q}
}
.

Therefore, it holds that |A| = mq − (m)q and |A \B| = q(q−1)
2 (m)q−1. Using this we get

|B| = |A| − |A \B|

= mq − (m)q −
q(q − 1)

2
(m)q−1

= mq −m(m− 1) · · · (m− (q − 1))− q(q − 1)

2
m(m− 1) · · · (m− (q − 2))

= mq −mq +
q(q − 1)

2
mq−1 +O

(
mq−2

)
− q(q − 1)

2
mq−1 +O

(
mq−2

)
= O

(
mq−2

)
as m→∞. We can now make the following calculation

Sm =
1

(m)q−1

 ∑
Mq(m)

g(Xi1 , . . . , Xiq)−
∑

Pq(m)

g(Xi1 , . . . , Xiq)


=

1

(m)q−1

∑
A

g(Xi1 , . . . , Xiq)

=
1

(m)q−1

∑
Pq−1(m)

w(Xi1 , . . . , Xiq−1) +
1

(m)q−1

∑
B

g(Xi1 , . . . , Xiq)

= U∗m(w) +
1

(m)q−1

∑
B

g(Xi1 , . . . , Xiq). (2.33)
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Finally, we can decompose mVm(g) as follows

mVm(g) =
1

mq−1

∑
Mq(m)

g(Xi1 , . . . , Xiq)−
1

mq−1

∑
Pq(m)

g(Xi1 , . . . , Xiq)

+
1

mq−1

∑
Pq(m)

g(Xi1 , . . . , Xiq)

=
(m)q−1

mq−1
Sm +

(m)q
mq−1

U∗m(g)

=
(
1 +O

(
m−1

))
Sm +

(
m− q(q − 1)

2
+O

(
m−1

))
Um(g)

=
(
1 +O

(
m−1

))
Sm −

((
q

2

)
+O

(
m−1

))
Um(g) +mUm(g). (2.34)

Combining (2.33) and (2.34) completes the proof of Lemma 2.37. �

2.3.6 Consistency of V-statistics

The following theorem is the counterpart of Theorem 2.31 for V-statistics. The proof is
a direct application of Lemma 2.36 and Theorem 2.31.

Theorem 2.38 (consistency of a V-statistic)
Assume Setting 2.26 and let g ∈ L1((PX)⊗q, |·|R) be a symmetric core function satisfying
the total boundedness condition of order 1. Then

Vm(g)
P−→ θg

as m→∞.

Proof By Theorem 2.31 it holds that

Um(g)
P−→ θg

as m→∞. Furthermore, by Lemma 2.36 we have that

E|Um(g)− Vm(g)| = O
(
m−1

)
as m→∞. Since convergence in L1 implies convergence in probability we obtain

Vm(g)
P−→ θg

as m→∞, which completes the proof of Theorem 2.38. �
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2.3.7 Variance of V-statistics

In the degenerate setting ξ1 = 0, Lemma 2.37 allows us to show that the variance of a
V-statistic is equal to that of a U-statistic up to a certain order of m. Its proof relies on
Lemma 2.37.

Theorem 2.39 (asymptotic variance of a V-statistic)
Assume Setting 2.26 and let g ∈ L2((PX)⊗q, |·|R) be a bounded core function satisfying
ξ1 = 0. Then it holds that

Var (Vm(g)) =

(
m

q

)−1(q
2

)(
m− q
q − 2

)
ξ2 +O

(
m−

5
2

)
.

as m→∞.

Proof It holds that
Var (Vm(g)) = Var (Vm(g̃)) ,

which implies that without loss of generality we can assume that θg = 0. By Lemma 2.37
we get that

mVm(g) =
(
1 +O

(
m−1

))
Sm

−
((

q

2

)
+O

(
m−1

)
−m

)
Um(g)

(2.35)

as m → ∞, where Sm = Um(w) + 1
(m)q−1

∑
B g(Xi1 , . . . , Xiq). Applying Theorem 2.28

results in

Var (Um(g)) =

(
m

q

)−1(q
2

)(
m− q
q − 2

)
ξ2 +O

(
m−3

)
(2.36)

and
Var (Um(w)) = O

(
m−1

)
. (2.37)

Moreover, using that g is bounded it holds that

Var

(
1

(m)q−1

∑
B

g(Xi1 , . . . , Xiq)

)

≤ 1

(m)2
q−1

E

(∣∣∣∑
B

g(Xi1 , . . . , Xiq)
∣∣∣2)

≤ 1

(m)2
q−1

∑
(i1,...,iq)∈B

∑
(j1,...,jq)∈B

E
(∣∣∣g(Xi1 , . . . , Xjq)g(Xi1 , . . . , Xjq)

∣∣∣)
≤ C|B|2

(m)2
q−1

= O
(
m−2

)
. (2.38)

So combining (2.37) and (2.38) shows that

Var (Sm) = O
(
m−1

)
(2.39)
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and
Cov (Um(g), Sm) ≤ (Var (Um(g)) Var (Sm))

1
2 = O

(
m−

3
2

)
. (2.40)

Finally, use (2.35), (2.36), (2.39) and (2.40) to get

Var (mVm(g)) =
(
1 +O

(
m−1

))2
Var (Sm)

+
((
q
2

)
+O

(
m−1

)
−m

)2
Var (Um(g))

− 2
(
1 +O

(
m−1

)) (
m+

(
q
2

)
+O

(
m−1

))
Cov (Um(g), Sm)

= O (1) Var (Sm) +
(
m2 +O (m)

)
Var (Um(g)) +O (m) Cov (Um(g), Sm)

= m2

(
m

q

)−1(q
2

)(
m− q
q − 2

)
ξ2 +O

(
m−

1
2

)
.

Dividing by m2 completes the proof of Theorem 2.39. �

2.3.8 Bias of V-statistics

As a further consequence of Lemma 2.37 the bias of a V-statistic can be explicitly ex-
pressed up to order m−2.

Theorem 2.40 (bias of a V-statistic)
Assume Setting 2.26 and let g ∈ L2((PX)⊗q, |·|R) be a core function satisfying the total
boundedness condition of order 2. Then it holds that

E (Vm(g)− θg) =
1

m

(
q

2

)
E (g̃2(X1, X1)) +O

(
m−2

)
as m→∞.

Proof We use Lemma 2.37 to get that

mVm(g̃) =
(
1 +O

(
m−1

))
Um(w)

+
(
1 +O

(
m−1

))
1

(m)q−1

∑
B

g̃(Xi1 , . . . , Xiq)

−
((

q

2

)
−m+O

(
m−1

))
Um(g̃).

(2.41)

Moreover, using the total boundedness condition of g we can get a constant C > 0 such
that

E
∣∣∣ 1

(m)q−1

∑
B

g̃(Xi1 , . . . , Xiq)
∣∣∣ ≤ 1

(m)q−1

∑
B

E
∣∣g̃(Xi1 , . . . , Xiq)

∣∣
≤ C |B|

(m)q−1

= O
(
m−1

)
(2.42)
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as m→∞. Hence, using (2.41),(2.42) and the unbiasedness of U-statistics results in

E (m (Vm(g)− θg)) = E (mVm(g̃)) = θw +O
(
m−1

)
. (2.43)

We can compute θw by using the symmetry of g̃ to get

θw = E (w(X1, . . . , Xq−1)) =

(
q

2

)
E (g̃2(X1, X1)) . (2.44)

Finally, combining (2.43) and (2.44) and dividing by m concludes the proof of Theorem
2.40. �

2.3.9 Asymptotic distribution of V-statistics

In this section we derive the asymptotic distributions for V-statistics based on the results
from Section 2.3.4.

Non-degenerate case

The following theorem is the counterpart of Theorem 2.33 for V-statistics. The proof is
a straightforward application of both Lemma 2.36 and Theorem 2.33.

Theorem 2.41 (asymptotic distribution of a V-statistic (non-degenerate))
Assume Setting 2.26, let g ∈ L2((PX)⊗q, |·|R) be a core function satisfying the total bound-
edness condition of order 2 and assume ξ1 > 0. Then it holds that

√
m (Vm(g)− θg)

d−→ N
(
0, q2ξ1

)
(2.45)

as m→∞.

Proof Since convergence in L2 implies convergence in probability Lemma 2.36 in partic-
ular shows that √

m (Vm(g)− Um(g))
P−→ 0

as m→∞. Combining this with Theorem 2.33 and Slutsky’s theorem we get

√
m (Vm(g)− θg) =

√
m (Um(g)− θg) +

√
m (Vm(g)− Um(g))

d−→ N
(
0, q2ξ1

)
as m→∞ which completes the proof of Theorem 2.41. �

Degenerate case

Theorem 2.43 is the counterpart of Theorem 2.34 for V-statistics. Similar statements
appear in literature (e.g. Gretton et al., 2007, Theorem 2). However, we are not aware of
a complete proof of the statement. The proof requires the following intermediate result.
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Lemma 2.42 (eigenvalue representation of the bias)
Assume Setting 2.26 and Setting 2.32, let g ∈ L2((PX)⊗q, |·|R) be a core function satisfying
the total boundedness condition of order 2, assume 0 = ξ1 < ξ2 and assume g̃2 is positive
definite and continuous. Then it holds that

E (g2(X1, X1)) =

∞∑
j=1

λj + θg

Proof Observe that g̃2 is a continuous positive definite kernel. We can therefore apply
Mercer’s theorem A.1 to get that for all x, y ∈ supp(PX ) it holds that

g̃2(x, y) =
∞∑
j=1

λjϕj(x)ϕj(y)

converges uniformly. If we now take expectation and use that we can exchange the sum
and expectation due the uniform convergence we get

E (g̃2(X1, X1)) = E

 ∞∑
j=1

λjϕj(X1)ϕj(X1)


=
∞∑
j=1

λjE
(
|ϕj(X1)|2

)
=

∞∑
j=1

λj ,

where in the last step we used that (ϕj)j∈N forms an orthonormal basis of L2(PX , |·|R).
The result follows by noting that g2 ≡ g̃2 + θg, which completes the proof of Lemma
2.42. �

We are now ready to state and prove the final result of this section.

Theorem 2.43 (Asymptotic distribution of a V-statistic (degenerate))
Assume Setting 2.26 and Setting 2.32, let g ∈ L2((PX)⊗q, |·|R) be a core function satisfying
the total boundedness condition of order 2, assume 0 = ξ1 < ξ2 and assume g̃2 is positive
definite and continuous. Then it holds that

m (Vm(g)− θg)
d−→
(
q

2

) ∞∑
j=1

λjZ
2
j

as m→∞.

Proof The idea of the proof is to use Lemma 2.37 to get the decomposition

mVm(g̃) =
(
1 +O

(
m−1

))
Sm

−
((

q

2

)
+O

(
m−1

))
Um(g̃)

+mUm(g̃)

(2.46)
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as m → ∞, where Sm = Um(w) + 1
(m)q−1

∑
B g̃(Xi1 , . . . , Xiq) and w is defined as in

Lemma 2.37. We then calculate the asymptotic behavior of Sm and use Theorem 2.34 to
conclude.

Begin by analyzing the asymptotic behavior of Sm. To this end, note that by symmetry
of the core function g it holds that

θw = E(w(X1, . . . , Xq−1)) =

(
q

2

)
E(g̃2(X1, X1)).

and together with Lemma 2.42 it holds that

θw = E(w(X1, . . . , Xq−1)) =

(
q

2

) ∞∑
j=1

λj .

Combining this with Theorem 2.31 it follows that

Um(w)
P−→ θw =

(
q

2

) ∞∑
j=1

λj (2.47)

as m → ∞. Next, we use the total boundedness condition of g to get a constant C > 0
such that

E
∣∣∣ 1

(m)q−1

∑
B

g̃(Xi1 , . . . , Xiq)
∣∣∣ ≤ 1

(m)q−1

∑
B

E
∣∣g̃(Xi1 , . . . , Xiq)

∣∣
≤ C |B|

(m)q−1

= O
(
m−1

)
as m→∞. Using that L1 convergence implies convergence in probability we get that

1

(m)q−1

∑
A2

g̃(Xi1 , . . . , Xiq)
P−→ 0 (2.48)

as m→∞. Finally, combining (2.47) and (2.48) this results in

Sm
P−→
(
q

2

) ∞∑
j=1

λj (2.49)

as m→∞.

Now, by the properties of convergence in probability, (2.49) and Theorem 2.31 we have

(
1 +O

(
m−1

))
Sm

P−→
(
q

2

) ∞∑
j=1

λj (2.50)
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and ((
q

2

)
+O

(
m−1

))
Um(g̃)

P−→ 0 (2.51)

asm→∞. Hence, (2.46), (2.50) and (2.51) together with Slutsky’s theorem and Theorem
2.34 shows that

m (Vm(g)− θg) = mVm(g̃)
d−→
(
q

2

) ∞∑
j=1

λjZ
2
j

as m→∞, which completes the proof of Theorem 2.43. �

2.3.10 Resampling results for U-statistics and V-statistics

In this section we want to consider what happens to the asymptotic behavior of mUm(g)
and mVm(g) if instead of the original data sequence (Xi)i∈N we consider a sequence of
resampled data. The differences are quite subtle, therefore one needs to be very precise
about what resampling means. Throughout this section we use the following setting.

Setting 2.44 (resampling)
Let X be a separable metric space, let (Ω,F ,P) be a probability space, let X : Ω → X be
a random variable and let (Xi)i∈N be a sequence of iid copies of X. For all n ∈ N, let
(Ωn,Fn,Pn) be probability spaces, let X∗n : Ωn → X be random variables satisfying that
X∗n

d→ X as n→∞ (i.e. limn→∞ En(f(X∗n)) = E(f(X)) for all bounded and continuous
functions f : X → R) and let (X∗n,i)i∈{1,...,n} be iid copies of X∗n.

The dataX∗m,1, . . . , X∗m,m should be interpreted as a new sample drawn from a distribution
which converges to PX as m goes to infinity. Resampled data of this type often show up
in different types of bootstrapping or permutation techniques.

We are interested in finding properties of the resampled U-statistc

Ũm(g) :=

(
m

q

)−1 ∑
Cq(m)

g
(
X∗m,i1 , . . . , X

∗
m,iq

)
and the resampled V-statistic

Ṽm(g) :=
1

mq

∑
Mq(m)

g
(
X∗m,i1 , . . . , X

∗
m,iq

)
.

The difference compared to the normal U-and V-statistic is that the distribution of the
sample X∗m,1, . . . , X∗m,m depends on m. Therefore, the results of the previous sections
only carry over to the resampled U-and V-statistics if they are results for which m is kept
fixed. Results about the asymptotic behavior of the resampled U-and V-statistics need
to be proved separately. A further more technical difficulty is that for different m the
random variables Ũm(g) and Ṽm(g) are no longer defined on the same probability space.
The following theorem gives us a way of dealing with this issue and is a slightly modified
version of Skorohod’s theorem (see Billingsley, 2008, Theorem 6.7).
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Theorem 2.45 (Skorohod’s theorem)
Assume Setting 2.44. Then there exists a common probability space (Ω̃, F̃ , P̃) and random
variables (X̃∗m,i)i∈{1,...,m}, m ∈ N and (X̃i)i∈N on this probability space satisfying

(i) for all m ∈ N, for all i ∈ {1, . . . ,m}: X̃∗m,i ∼ PX
∗
m ,

(ii) for all i ∈ N: X̃i ∼ PX and,

(iii) X̃∗m,i
P̃-a.s.−→ X̃i as m→∞.

In order to avoid ambiguity between the resampled and the original sample we introduce
the following notation

(i) for all m ∈ N and all c ∈ {1, . . . ,m} define

gmc (x1, . . . , xc) := E(g(x1, . . . , xc, X
∗
m,c+1, . . . , X

∗
m,q)),

(ii) for all m ∈ N define
θmg := E(g(X∗m,1, . . . , X

∗
m,q)),

(iii) for all m ∈ N and all c ∈ {1, . . . ,m} define

ξmc (g) := E((gmc (X∗m,1, . . . , X
∗
m,c)− θmg )2).

The following theorem shows that Ũm(g) is also consistent with θg in the appropriate
sense.

Lemma 2.46 (consistency of a resampling U-statistic)
Assume Setting 2.44 and let g ∈ L1((PX)⊗q, |·|R) be a continuous, bounded core function.
Then it holds that

Ũm(g)
d−→ θg

as m→∞.

Proof Applying Theorem 2.45 results in a probability space (Ω̃, F̃ , P̃) and random vari-
ables (X̃∗m,i)i∈{1,...,m},m ∈ N and (X̃i)i∈N with properties specified in Theorem 2.45. Next,
introduce the resampled U-statistic

Ũm(g) :=

(
m

q

)−1 ∑
Cq(m)

g(X̃∗m,i1 , . . . , X̃
∗
m,iq),

which has the same distribution under P̃ as Ũm(g) under Pm and the U-statistic

Um(g) :=

(
m

q

)−1 ∑
Cq(m)

g(X̃i1 , . . . , X̃iq),
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which has the same distribution under P̃ as Um(g) under P. It holds that

Ũm(g)− Um(g) =

(
m

q

)−1 ∑
Cq(m)

(
g(X̃∗m,i1 , . . . , X̃

∗
m,iq)− g(X̃i1 , . . . , X̃iq)

)

=

(
m

q

)−1 ∑
Cq(m)

w((X̃i1 , X̃
∗
m,i1), . . . , (X̃iq , X̃

∗
m,iq)), (2.52)

where w(x1, . . . ,xq) := g(x2
1, . . . , x

2
q) − g(x1

1, . . . , x
1
q) is a symmetric core function. If we

define for all c ∈ {1, . . . , q} the functions

wmc (x1, . . . ,xc) := E
(
g(x2

1, . . . , x
2
c , X̃

∗
m,c+1, . . . , X̃

∗
m,q)− g(x1

1, . . . , x
1
c , X̃c+1, . . . , X̃q)

)
it holds by the boundedness of g that there exists a constant C ∈ R such that

sup
m∈N

ξmc (w) < C (2.53)

By (2.52), it holds that for fixed m we can apply Theorem 2.28 and together with (2.53)
we get

Var
(
Ũm(g)− Um(g)

)
=

(
m

q

)−1 m∑
c=1

(
q

c

)(
m− q
q − c

)
ξmc (w) = O

(
m−1

)
. (2.54)

For (i1, . . . , iq) ∈ Cq(m) it holds by continuity of g that

g(X̃∗m,i1 , . . . , X̃
∗
m,iq)

P̃-a.s.−→ g(X̃i1 , . . . , X̃iq)

as m→∞ and since g is also bounded the dominated convergence theorem in particular
implies

lim
m→∞

E
(
g(X̃∗m,i1 , . . . , X̃

∗
m,iq)− g(X̃i1 , . . . , X̃iq)

)
= 0. (2.55)

Combining (2.54) and (2.55) hence proves that

lim
m→∞

E
((
Ũm(g)− Um(g)

)2
)

= lim
m→∞

E
(
Ũm(g)− Um(g)

)2

= lim
m→∞

E
(
g(X̃∗m,i1 , . . . , X̃

∗
m,iq)− g(X̃i1 , . . . , X̃iq)

)2

= 0.

Using that convergence in second moment implies convergence in probability we have
therefore shown that

Ũm(g)− Um(g)
P−→ 0

as m→∞. Together with Theorem 2.31 it follows that

Ũm(g)− θg = (Ũm(g)− Um(g))− (θg − Um(g))
P−→ 0

as m→∞. This concludes the proof of Lemma 2.46. �
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The following two theorems are extensions of results due to Leucht and Neumann (2009)
that show that U-and V-statistics based on resampled data keep their respective asymp-
totic distributions. In Leucht and Neumann (2009) only U-and V-statistics of order 2 (i.e.
q = 2) are considered. We adopted the proofs to work for arbitrary order.

Theorem 2.47 (asymptotic distribution of degenerate a resampling U-statistic)
Assume Setting 2.44 and Setting 2.32, let g ∈ L2((PX)⊗q, |·|R) be a continuous, bounded
core function. Moreover, assume

(i) for all m ∈ N that gm1 ≡ 0,

(ii) g1 ≡ 0 (which implies ξ1(g) = 0),

(iii) ξ2(g) > 0 and

(iv) θg = 0.

Then it holds that

mŨm(g)
d−→
(
q

2

) ∞∑
j=1

λj(Z
2
j − 1)

as m→∞.

Proof Applying Theorem 2.45 results in a probability space (Ω̃, F̃ , P̃) and random vari-
ables (X̃∗m,i)i∈{1,...,m}, m ∈ N and (X̃i)i∈N with properties specified in Theorem 2.45. For
(i1, . . . , iq) ∈ Cq(m) it holds by continuity of g that

g(X̃∗m,i1 , . . . , X̃
∗
m,iq)

P̃-a.s.−→ g(X̃i1 , . . . , X̃iq)

as m→∞ and since g is also bounded the dominated convergence theorem in particular
implies

lim
m→∞

E
((

g(X̃∗m,i1 , . . . , X̃
∗
m,iq)− g(X̃i1 , . . . , X̃iq)

)2
)

= 0. (2.56)

Next, introduce the resampling U-statistic

Ũm(g) :=

(
m

q

)−1 ∑
Cq(m)

g(X̃∗m,i1 , . . . , X̃
∗
m,iq),

which has the same distribution under P̃ as Ũm(g) under Pm and the U-statistic

Um(g) :=

(
m

q

)−1 ∑
Cq(m)

g(X̃i1 , . . . , X̃iq),

which has the same distribution under P̃ as Um(g) under P. It holds that

Ũm(g)− Um(g) =

(
m

q

)−1 ∑
Cq(m)

(
g(X̃∗m,i1 , . . . , X̃

∗
m,iq)− g(X̃i1 , . . . , X̃iq)

)

=

(
m

q

)−1 ∑
Cq(m)

w((X̃i1 , X̃
∗
m,i1), . . . , (X̃iq , X̃

∗
m,iq)), (2.57)
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where w(x1, . . . ,xq) := g(x2
1, . . . , x

2
q)− g(x1

1, . . . , x
1
q) is a symmetric core function. Define

for all c ∈ {1, . . . , q} the functions

wmc (x1, . . . ,xc) := E
(
g(x2

1, . . . , x
2
c , X̃

∗
m,c+1, . . . , X̃

∗
m,q)− g(x1

1, . . . , x
1
c , X̃c+1, . . . , X̃q)

)
and the functions

ξmc (w) := E
(
wmc ((X̃1, X̃

∗
m,1), . . . , (X̃c, X̃

∗
m,c))

2
)
.

Then, it holds by the boundedness of g that there exists a constant C ∈ R such that

sup
m∈N

ξmc (w) < C (2.58)

Moreover, it holds by assumption (i) and (ii) that

wm1 (x1) = E
(
g(x2

1, X̃
∗
m,2, . . . , X̃

∗
m,q)− g(x1

1, X̃2, . . . , X̃q)
)

= gm1 (x2
1)− g1(x1

1)

= 0,

which immediately implies that

ξm1 (w) = E
(
wm1 ((X̃1, X̃

∗
m,1))2

)
= 0. (2.59)

Furthermore, using Jensen’s inequality it holds that

ξm2 (w) = E
(
wm2 ((X̃1, X̃

∗
m,1), (X̃2, X̃

∗
m,2))2

)
≤ E

(
w((X̃1, X̃

∗
m,1), . . . , (X̃q, X̃

∗
m,q))

2
)

= E
((

g(X̃∗m,1, . . . , X̃
∗
m,q)− g(X̃1, . . . , X̃q)

)2
)
. (2.60)

By (2.57), it holds that for fixed m we can apply Theorem 2.28 and together with (2.58)
and (2.59) we get

Var
(
Ũm(g)− Um(g)

)
=

(
m

q

)−1 m∑
c=1

(
q

c

)(
m− q
q − c

)
ξmc (w) = O

(
m−2

)
ξm2 (w) +O

(
m−3

)
.

Hence, together with (2.60) and (2.56) it holds that

lim
m→∞

Var
(
m
(
Um(g)− Ũm(g)

))
= 0

and consequently also that

m
(
Um(g)− Ũm(g)

)
P̃−→ 0
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as m→∞. Finally, applying Slutsky’s theorem together with Theorem 2.34 results in

mŨm(g) = mUm(g) +m
(
Ũm(g)− Um(g)

)
d−→
(
q

2

) ∞∑
j=1

λj(Z
2
j − 1)

as m→∞, which completes the proof of Theorem 2.47. �

The same result also holds for V-statistics. The proof uses the same technique as the
proof of Theorem 2.43 and reduces the V-statistic back to the U-statistic.

Theorem 2.48 (asymptotic distribution of degenerate resampling V-statistic)
Assume Setting 2.44 and Setting 2.32, let g ∈ L2((PX)⊗q, |·|R) be a continuous, bounded
core function. Moreover, assume

(i) for all m ∈ N that gm1 ≡ 0,

(ii) g1 ≡ 0 (which implies ξ1(g) = 0),

(iii) ξ2(g) > 0 and

(iv) θg = 0.

Then it holds that

mṼm(g)
d−→
(
q

2

) ∞∑
j=1

λjZ
2
j

as m→∞.

Proof Applying Theorem 2.45 results in a probability space (Ω̃, F̃ , P̃) and random vari-
ables (X̃∗m,i)i∈{1,...,m},m ∈ N and (X̃i)i∈N with properties specified in Theorem 2.45. Next,
introduce the resampling U-statistic

Ũm(g) :=

(
m

q

)−1 ∑
Cq(m)

g(X̃∗m,i1 , . . . , X̃
∗
m,iq),

which has the same distribution under P̃ as Ũm(g) under Pm and the resampling V-statistic

Ṽm(g) :=
1

mq

∑
Mq(m)

g(X̃∗m,i1 , . . . , X̃
∗
m,iq),

which has the same distribution under P̃ as Ṽm(g) under Pm. For fixed m ∈ N we can
view Ṽm(g) as a V-statistic and apply an adjusted version of Lemma 2.37 to get

mṼm(g̃) =
(
1 +O

(
m−1

))
Sm +

(
m−

(
q

2

)
+O

(
m−1

))
Ũm(g̃) (2.61)

as m → ∞, where Sm = Ũm(w) + 1
(m)q−1

∑
B g̃(X̃∗m,i1 , . . . , X̃

∗
m,iq

). By the symmetry of
the core function g and the definition of w given in Lemma 2.37 it holds that

θw = E (w(X1, . . . , Xq−1)) =

(
q

2

)
E (g̃2(X1, X1)) .
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The consistency of resampled U-statistics given in Lemma 2.46 together with Lemma 2.42
imply that

Ũm(w)
d−→ θw =

(
q

2

) ∞∑
j=1

λj (2.62)

as m → ∞. The boundedness of g combined with the size of the set B given in Lemma
2.37 shows that

1

(m)q−1

∑
B

g̃(X̃∗m,i1 , . . . , X̃
∗
m,iq) ≤

C|B|
(m)q−1

= O
(
m−1

)
. (2.63)

Moreover, also by Lemma 2.46 it holds that

Ũm(g̃)
d−→ 0 (2.64)

as m→∞ and by Theorem 2.47 it holds that

mŨm(g̃)
d−→

∞∑
j=1

λj
(
Z2
j − 1

)
. (2.65)

Finally, we can combine (2.61), (2.62), (2.63), (2.64), (2.65) and use that convergence
in distribution to a constant implies convergence in probability together with Slutsky’s
theorem to get that

mṼm(g̃)
d−→

∞∑
j=1

λjZ
2
j

as m→∞. This concludes the proof of Theorem 2.48. �

2.4 Mathematical statistics

2.4.1 Statistical Framework

This section intends to shortly introduce a basic statistical framework. For our purposes
it will be important to have a setting that allows for asymptotic considerations. Similar
settings can be found in almost every book on mathematical statistics (e.g. Lehmann and
Casella, 1998).

Let (Ω,F ,P) be a probability space, let X be a measurable space and let X : Ω → X
be a random variable for which the exact law PX is not fully known. In statistics one is
often interested in determining different characteristics of the distribution PX , which are
generally referred to as statistical functionals.

Definition 2.49 (statistical functional)
Let X be a measurable space. Then a function

θ : P(X ) −→ R

is a called statistical functional.
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A fundamental question in statistics is how to estimate the value of θ(PX) given a set
of observations connected in some way to X. This estimation process is referred to as
point estimation in literature. A common setting is to assume the existence of a sequence
(Xi)i∈N of iid copies of X, for which we observe one particular outcome (xi)i∈N. The
intuition being that the Xi are a sequence of independent experiments with observed
outcome xi. One is then interested in a method that, based on the first m observations
x1, . . . , xm, outputs a ’reasonable’ estimate of θ(PX). The following definition formalizes
the estimation method.

Definition 2.50 (statistic/estimator)
Let X be a measurable space. Then a family of measurable functions T = (Tm)m∈N
satisfying for all m ∈ N that

Tm : Xm → R

is called a statistic (or estimator).

Given a statistical functional θ we call a statistic T = (Tm)m∈N an estimator of θ if
Tm(X1, . . . , Xm) is in some sense a good approximation of θ. A good approximation
could for example mean that T satisfies for all X with PX ∈ P(X ) and for all m ∈ N that

E (Tm(X1, . . . , Xm)) = θ
(
PX
)
,

whereX1, X2, . . . ,
iid∼ PX . Statistics satisfying this condition are called unbiased estimators

of θ. There are however also many other notions of ’good’ approximations, many of which
are concerned with asymptotic properties of Tm as m goes to infinity.

2.4.2 Hypothesis testing

In this section we intend to introduce a general framework for hypothesis testing. Similar
definitions as given in this section can be found in Lehmann and Romano (2005).

Let Θ ⊆ P(X ) be the model class, i.e. the set of probability measures that fall within
the statistical model. We will simply take Θ = P(X ), since we do not want to make any
model restrictions.

Furthermore, let H0 ⊆ Θ and HA ⊆ Θ such that H0 ∩ HA = ∅. We call H0 the null
hypothesis and HA the alternative hypothesis. Given a generating process X with law
PX ∈ Θ and a sequence of iid copies (Xi)i∈N of X, the goal of a statistical hypothesis test
is to decide, based on a finite sample X1, . . . , Xm, whether to accept or reject the null
hypothesis

PX ∈ H0.

We formalize this in the following definition.

Definition 2.51 (statistical hypothesis test)
Let X be a separable metric space. Let ϕ = (ϕm)m∈N be a family of measurable functions
with the property that for all m ∈ N it holds that ϕm : Xm → {0, 1}. Then we call ϕ a
statistical hypothesis test.
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Given a specific outcome x1, . . . , xm of the random variables X1, . . . , Xm we interpret

ϕm(x1, . . . , xm) = 1

as rejection of the null hypothesis (i.e. PX /∈ H0) and

ϕm(x1, . . . , xm) = 0

as acceptance of the null hypothesis (i.e. PX ∈ H0). Of course such an interpretation
only makes sense if ϕ encodes information about whether PX actually lies within the null
hypothesis or not. To quantify this, we introduce two notions of error.

Definition 2.52 (Type I and Type II error)
Let X be a separable metric space, let (Ω,F ,P) be a probability space and let ϕ = (ϕm)m∈N
be a statistical hypothesis test. Then, for all m ∈ N define the Type I error (given m
observations) by

E1(ϕm) := sup
X:PX∈H0

P (ϕm(X1, . . . , Xm) = 1) ,

where X1, X2, . . .
iid∼ PX and the Type II error (given m observations) by

E2(ϕm) := sup
X:PX∈HA

P (ϕm(X1, . . . , Xm) = 0) ,

where X1, X2, . . .
iid∼ PX .

The Type I error is the highest possible probability of rejecting the null hypothesis al-
though it is true, while the Type II error is the highest probability of accepting the null
hypothesis even though the alternative hypothesis holds. In traditional hypothesis test-
ing one usually takes an asymmetric viewpoint and assumes that a Type I error is more
severe than a Type II error. The first priority is thus to control the Type I error, which
is done by enforcing that it lies below a certain threshold α ∈ (0, 1). This is formalized
in the next definition.

Definition 2.53 (level of a test)
Let X be a separable metric space, let (Ω,F ,P) be a probability space, let α ∈ (0, 1) and
let ϕ = (ϕm)m∈N be a statistical hypothesis test. If ϕ satisfies for all m ∈ N that

E1(ϕm) ≤ α,

then we call ϕ a hypothesis test at (valid) level α. If ϕ satisfies

lim sup
m→∞

E1(ϕm) ≤ α,

then we call ϕ a hypothesis test at uniform asymptotic level α. If ϕ satisfies for all X
with PX ∈ H0 that

lim
m→∞

P (ϕm(X1, . . . , Xm) = 1) ≤ α,

where X1, X2, . . .
iid∼ PX then we call ϕ a hypothesis test at pointwise asymptotic level α.
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A further desirable property of a test is that it is able to detect (at least in the large
sample limit) if a given set of observations comes from a random variable, with law in the
alternative hypothesis. For example, one can always consider the trivial test phim ≡ 0
which achieves any level but will never reject the null hypothesis. This is the subject of
the next definition.
Definition 2.54 (consistency of a test)
Let X be a separable metric space, let (Ω,F ,P) be a probability space and let ϕ = (ϕm)m∈N
be a statistical hypothesis test. If ϕ satisfies

lim
m→∞

E2(ϕm) = 0,

then we call ϕ a uniformly consistent hypothesis test. If ϕ satisfies for all X with PX ∈ HA

that
lim
m→∞

P (ϕm(X1, . . . , Xm) = 0) = 0,

where X1, X2, . . .
iid∼ PX then we call ϕ a pointwise consistent hypothesis test.

Construction of tests

In the previous section we introduced the statistical hypothesis test as an abstract estima-
tor. It is, however, not immediately clear what such a test looks like. In fact, a statistical
hypothesis test can have an arbitrarily complex form. For practical applications, there
exist many heuristics that can be used to help construct explicit tests.

The starting point is generally a statistic T = (Tm)m∈N on X called test statistic. It should
behave differently under the null hypothesis H0 than under the alternative hypothesis HA.
For example, T could be negative in expectation under H0 and positive in expectation
under HA. A statistical hypothesis test could then try to make use of these properties in
an appropriate way. One option would be to introduce a threshold statistic c = (cm)m∈N
(potentially depending on the observations) and define a test ϕ = (ϕm)m∈N such that for
all m ∈ N and all x1, . . . , xm ∈ X it holds that

ϕm(x1, . . . , xm) :=

{
0 if Tm(x1, . . . , xm) ≤ cm(x1, . . . , xm)

1 if Tm(x1, . . . , xm) > cm(x1, . . . , xm).
(2.66)

Given a fixed level α ∈ (0, 1), we then try to chose the threshold c in such way that ϕ is
a consistent test at (asymptotic) level α.

Resampling tests

Generally, choosing the threshold c requires some type of knowledge of the distribution
of Tm. In practical applications, it is however often hard to get this type of information.
Resampling tests are one option to avoid explicitly determining the distribution of T .

Let α ∈ (0, 1), let X be a separable metric space, let T = (Tm)m∈N be a test statistic
on X , let X be a random variable with values in X and let (Xi)i∈N be a sequence of iid
copies.
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The main idea behind resampling tests is to construct data sets based on the original
observations (X1, . . . , Xm). These types of constructions are formalized by resampling
methods.
Definition 2.55 (resampling method)
Let X be a separable metric space and let (Mm)m∈N ⊆ N be a sequence. If

g =
(
(gm,k)k∈{1,...,Mm}

)
m∈N

is a family of functions satisfying for all m ∈ N and for all k ∈ {1, . . . ,Mm} that

gm,k : Xm → Xm,

then we call g a resampling method.

Based on a resampling method g we can construct new observations for all m ∈ N and
for all k ∈ {1, . . . ,Mm} by defining

Zm,k := gm,k(X1, . . . , Xm).

The new ’resampled’ data (Zm,k)k∈{1,...,Mm} ⊆ Xm, m ∈ N is called resampling scheme
and for each m ∈ N the sequence Zm,1, . . . , Zm,Mm should be seen as Mm resampled
data sets constructed from the original observations (X1, . . . , Xm). A resampling method
is therefore a formalization of the concept of resampling Mm times from the original
observations (X1, . . . , Xm).

Based on a resampling method we can introduce the resampling distribution function.

Definition 2.56 (resampling distribution function)
Let X be a separable metric space, let T = (Tm)m∈N be a test statistic on X , let g be a
resampling method. For all m ∈ N the functions R̂Tm : Xm × R → [0, 1] defined for all
(x1, . . . , xm) ∈ Xm and for all t ∈ R by

R̂Tm(x1, . . . , xm)(t) :=
1

Mm

Mm∑
k=1

1{Tm(gm,k(x1,...,xm))≤t}

are called the resampling distribution functions (corresponding to test statistic T and
resampling method g).

Fixing m ∈ N and (x1, . . . , xm) ∈ Xm it holds that

R̂Tm(x1, . . . , xm) : R→ [0, 1]

is non-decreasing, right-continuous and satisfies

lim
t→-∞

R̂Tm(x1, . . . , xm)(t) = 0 and lim
t→∞

R̂Tm(x1, . . . , xm)(t) = 1.

This implies that R̂Tm(x1, . . . , xm) is a distribution function and thus we can define the
generalized inverse (

R̂Tm(x1, . . . , xm)
)−1

: (0, 1)→ R
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satisfying for all α ∈ (0, 1) that(
R̂Tm(x1, . . . , xm)

)−1
(α) := inf{t ∈ R | R̂Tm(x1, . . . , xm)(t) ≥ α}.

Based on the resampling distribution functions we can define a resampling test as follows.

Definition 2.57 (resampling test)
Let α ∈ (0, 1), let X be a separable metric space, let T = (Tm)m∈N be a test statistic on
X , let g be a resampling method and let R̂Tm be the corresponding resampling distribution
functions. A hypothesis test ϕ = (ϕm)m∈N defined for all m ∈ N and for all (x1, . . . , xm) ∈
Xm by

ϕm(x1, . . . , xm) := 1{Tm(x1,...,xm)>(R̂Tm (x1,...,xm))−1(1−α)}
is called α-resampling test (corresponding to g).

The advantage of resampling tests is that they can be constructed for any test statistic.
We now define an important subclass of resampling methods.

Definition 2.58 (resampling group)
Let X be a separable metric space, let (Mm)m∈N ⊆ N be a sequence and let g be a resam-
pling method. If g satisfies that

G := {gm,1, . . . , gm,Mm}

together with concatenation is a group of transformations on Xm, then we call g a resam-
pling group.

Resampling groups have the important property that for all test statistics T = (Tm)m∈N
the corresponding resampling distribution functions satisfy for all m ∈ N, for all k ∈
{1, . . . ,Mm} and for all (x1, . . . , xm) ∈ Xm that

R̂Tm(x1, . . . , xm) = R̂Tm(gm,k(x1, . . . , xm)). (2.67)

This follows immediately from the group property of g. It allows us to prove, given
an appropriate invariance of the resampling group under the null hypothesis, that the
corresponding resampling test achieves level α. The following theorem is a reformulation
of Lehmann and Romano (2005, Theorem 15.2.1).

Theorem 2.59 (level of resampling tests)
Let α ∈ (0, 1), let X be a separable metric space, let H0, HA ⊆ P(X ) be a null and
alternative hypothesis respectively, let g be a resampling group satisfying under H0 that
for all m ∈ N and for all k ∈ {1, . . . ,Mm} it holds that

gm,k(X1, . . . , Xm) is equal in distribution to (X1, . . . , Xm).

Then, the α-resampling test ϕ corresponding to g is a test at level α, when testing H0

against HA.
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Proof Fix m ∈ N and let K be a uniformly distributed random variable on {1, . . . ,Mm}
independent of (X1, . . . , Xm). Let (x1, . . . , xm) ∈ Im((X1, . . . , Xm)) and for all k ∈
{1, . . . ,Mm} define zm,k := gm,k(x1, . . . , xm) then it holds that

Tm(zm,K) (2.68)

has the distribution function R̂Tm(x1, . . . , xm). Hence, using (2.67) and the the properties
of the generalized inverse it holds that

1

Mm

Mm∑
k=1

1{Tm(zm,k)>(R̂Tm (zm,k))−1(1−α)}

=
1

Mm

Mm∑
k=1

1{Tm(zm,k)>(R̂Tm (x1,...,xm))−1(1−α)}

= E
(
1{Tm(zm,K)>(R̂Tm (x1,...,xm))−1(1−α)}

)
≤ α,

which together with the monotonicity of the integral and the convention

Zm,k = gm,k(X1, . . . , Xm)

implies that

E

(
1

Mm

Mm∑
k=1

1{Tm(Zm,k)>(R̂Tm (Zm,k))−1(1−α)}

)
≤ α. (2.69)

Moreover, under H0, i.e. X1, X2, . . . ∼ PX ∈ H0, it holds by assumption for all k ∈
{1, . . . ,Mm} that (X1, . . . , Xm) is equal in distribution to Zm,k. This in particular implies
that under H0 it holds for all k ∈ {1, . . . ,Mm} that

E (ϕm(Zm,k)) = E (ϕm(X1, . . . , Xm)) . (2.70)

Combining (2.69) and (2.70) results in

P (ϕm(X1, . . . , Xm) = 1) = E (ϕm(X1, . . . , Xm))

=
1

Mm

Mm∑
k=1

E (ϕm(Zm,k))

= E

(
1

Mm

Mm∑
k=1

1{Tm(Zm,k)>(R̂Tm (Zm,k))−1(1−α)}

)
≤ α,

which completes the proof of Theorem 2.59. �

The invariance assumption of the resampling group in the previous theorem is the same as
the randomization hypothesis given by Lehmann and Romano (2005, Definition 15.2.1).

Unfortunately, there are no guarantees that an arbitrary resampling test controls the
Type II error in any way. Results of this type need to be checked on a case by case basis
by analyzing the resampling distribution function for the specific test statistic.
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Monte-Carlo approximated resampling tests

Finally, we want to discuss a computational difficulty that often arises in the context
of resampling tests. The problem is that in practical applications the parameter Mm

from the definition of a resampling method grows very fast in m and makes computations
impossible for large m. One method of dealing with this is to approximate the resampling
distribution R̂m using a Monte-Carlo approximated version.

Definition 2.60 (Monte-Carlo approximated resampling distribution)
Let X be a separable metric space, let T = (Tm)m∈N be a test statistic on X , let g be
a resampling method and let (Ki)i∈N be a sequence of independent uniformly distributed
random variables on {1, . . . ,Mm}. For all B ∈ N let R̂BTm : Xm × R → [0, 1] be the
functions defined for all (x1, . . . , xm) ∈ Xm and for all t ∈ R by

R̂BTm(x1, . . . , xm)(t) :=
1

B

B∑
i=1

1{Tm(gm,Ki (x1,...,xm))≤t}

are called the Monte-Carlo approximated resampling distribution functions (corresponding
to test statistic T and resampling method g).

The following proposition shows that R̂BTm approximates R̂Tm in an appropriate way.

Proposition 2.61 (Monte-Carlo approximation of resampling distribution)
Let X be a separable metric space, let T = (Tm)m∈N be a test statistic on X , let g be a
resampling method, let R̂Tm be the resampling distribution functions and for all B ∈ N
let R̂BTm be the Monte-Carlo approximated resampling distribution functions. Then for all
(x1, . . . , xm) ∈ Xm and for all t ∈ R it holds P-a.s. that

lim
B→∞

R̂BTm(x1, . . . , xm)(t) = R̂Tm(x1, . . . , xm)(t).

Proof Let (Ki)i∈N be the sequence of uniformly distributed random variables on {1, . . . ,Mm}
from the definition of R̂BTm , then introduce for all k ∈ {1, . . . ,Mm} and for all i ∈ N the
random variables

Y k
i := 1{Ki=k}.

Y k
i has a Bernoulli distribution with parameter 1

Mm
. Furthermore, we can write

R̂BTm(x1, . . . , xm)(t) =
1

B

B∑
i=1

1{Tm(gm,Ki (x1,...,xm))≤t}

=

Mm∑
k=1

∑B
i=1 Y

k
i

B
1{Tm(gm,k(x1,...,xm))≤t}.

By the strong law of large numbers this implies that P-a.s. it holds that

lim
B→∞

R̂BTm(x1, . . . , xm)(t) =
1

Mm

Mm∑
k=1

1{Tm(gm,k(x1,...,xm))≤t} = R̂Tm(x1, . . . , xm)(t),

which completes the proof of Proposition 2.61. �
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We are now ready to define Monte-Carlo approximated resampling test. Instead of using
the (1 − α)-quantile of the Monte-Carlo approximated resampling distribution we use a
slightly larger critical value. Surprisingly, for resampling groups satisfying the invariance
condition in Theorem 2.59, this allows us to achieve level α for any value of B. The trick
is that slightly larger critical value accounts for the uncertainty due to the Monte-Carlo
approximation.

We define the test using the p-value as this leads to easier calculations. The corresponding
critical value can then be calculated via the standard correspondence between p-value and
hypothesis test.

Definition 2.62 (Monte-Carlo approximated resampling test)
Let α ∈ (0, 1), let X be a separable metric space, let T = (Tm)m∈N be a test statistic on
X , let g be a resampling method, let B ∈ N, let (Ki)i∈N be a sequence of independent uni-
formly distributed random variables on {1, . . . ,Mm} and let (k1, . . . , kB) be a realization
of (K1, . . . ,KB). For all m ∈ N define the function p̂m : Xm → [ 1

B+1 , 1] satisfying

p̂m(x1, . . . , xm) :=
1 +

∣∣{i ∈ {1, . . . , B} : Tm(gm,ki(x1, . . . , xm)) ≥ Tm(x1, . . . , xm)}
∣∣

1 +B
.

Then the hypothesis test ϕ = (ϕm)m∈N defined for allm ∈ N and for all (x1, . . . , xm) ∈ Xm
by

ϕm(x1, . . . , xm) := 1{p̂m(x1,...,xm)≤α},

is called α-Monte-Carlo approximated resampling test.

The function p̂m is called p-value of the test ϕm. The following proposition shows that
the Monte-Carlo approximated resampling test achieves level α given the appropriate
invariance assumptions on g.

Proposition 2.63 (Monte-Carlo approximated resampling test has valid level)
Let α ∈ (0, 1), let X be a separable metric space, let H0, HA ⊆ P(X ) be a null and
alternative hypothesis respectively, let T = (Tm)m∈N be a test statistic on X , let B ∈ N
and let g be a resampling group satisfying under H0 that for all m ∈ N and for all
k ∈ {1, . . . ,Mm} it holds that

gm,k(X1, . . . , Xm) is equal in distribution to (X1, . . . , Xm), (2.71)

and for all k, l ∈ {1, . . . ,Mm} it holds that

P (Tm(gm,k(X1, . . . , Xm)) = Tm(gm,l(X1, . . . , Xm))) = 0. (2.72)

Then, the corresponding α-Monte-Carlo approximated resampling test ϕ = (ϕm)m∈N has
level α when testing H0 against HA.

Proof Begin by defining the function f : {1, . . . ,Mm}B × Xm → {0, . . . , B} satisfying
for all (k1, . . . , kB) ∈ {1, . . . ,Mm}B and for all (x1, . . . , xm) ∈ Xm that

f(k1, . . . , kB)(x1, . . . , xm) :=
∣∣{i ∈ {1, . . . , B} : Tm(gm,ki(x1, . . . , xm)) ≥ Tm(x1, . . . , xm)}

∣∣,
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and the function ftot : Xm → {1, . . . ,Mm} satisfying for all (x1, . . . , xm) ∈ Xm that

ftot(x1, . . . , xm) :=
∣∣{i ∈ {1, . . . ,Mm} : Tm(gm,i(x1, . . . , xm)) ≥ Tm(x1, . . . , xm)}

∣∣.
Then, by the invariance assumption (2.71) it holds under H0 for all k, l ∈ {1, . . . ,Mm}
that

P (ftot(X1, . . . , Xm) = l) = P (ftot(gm,k(X1, . . . , Xm)) = l) . (2.73)

Moreover, since g is a group it holds P-a.s. that

ftot(gm,k(X1, . . . , Xm)) =

Mm∑
i=1

1{Tm(gm,i(gm,k(X1,...,Xm)))≥Tm(gm,k(X1,...,Xm))}

=

Mm∑
i=1

1{Tm(gm,i(X1,...,Xm))≥Tm(gm,k(X1,...,Xm))},

which implies together with (2.72) it holds P-a.s. that

Mm∑
k=1

1{ftot(gm,k(X1,...,Xm))=l} = 1. (2.74)

Combining (2.73) and (2.74) it holds under H0 that

P (ftot(X1, . . . , Xm) = l) =
1

Mm

Mm∑
k=1

P (ftot(gm,k(X1, . . . , Xm)) = l)

=
1

Mm

Mm∑
k=1

E
(
1{ftot(gm,k(X1,...,Xm))=l}

)
=

1

Mm
E

(
Mm∑
k=1

1{ftot(gm,k(X1,...,Xm))=l}

)

=
1

Mm
,

which proves that under H0 it holds that ftot(X1, . . . , Xm) is uniformly distributed on
{1, . . . ,Mm}. Furthermore, conditioned on ftot(X1, . . . , Xm) = l it holds for all i ∈
{1, . . . , B} that

1{Tm(gm,Ki (X1,...,Xm))≥Tm(X1,...,Xm)}

is Bernoulli l
Mm

distributed which again conditioned on ftot(X1, . . . , Xm) = l implies that

f(K1, . . . ,KB)(X1, . . . , Xm) =
B∑
i=1

1{Tm(gm,Ki (X1,...,Xm))≥Tm(X1,...,Xm)}
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has binomial distribution with parameters B and l
Mm

. It therefore holds under H0 that

P (p̂m(X1, . . . , Xm) ≤ α)

= P (f(K1, . . . ,KB)(X1, . . . , Xm) ≤ (B + 1)α− 1)

=

Mm∑
l=1

P (f(K1, . . . ,KB)(X1, . . . , Xm) ≤ (B + 1)α− 1 | ftot(X1, . . . , Xm) = l)

· P (ftot(X1, . . . , Xm) = l)

=
1

Mm

Mm∑
l=1

b(B+1)α−1c∑
i=0

(
B

i

)(
l

Mm

)i(
1− l

Mm

)B−i

≤
∫ 1

0

b(B+1)α−1c∑
i=0

(
B

i

)
(x)i (1− x)B−i λ(dx)

=
b(B + 1)α− 1c+ 1

B + 1

≤ α,

where we approximated the sum by an integral and solved the integral using integration
by parts. This completes the proof of Proposition 2.63. �

The p-value is underestimated by the choice we made. In fact, as described in Phipson
and Smyth (2010), the level of the test would be preserved even if we chose the p-value
slightly larger. This allows to construct a permutation test which is not only valid in level
but actually achieves exact level.

The next proposition specifies the critical value that leads to the Monte-Carlo approxi-
mated resampling test.

Proposition 2.64 (critical value of Monte-Carlo approximated resampling test)
Let α ∈ (0, 1), let X be a separable metric space, let T = (Tm)m∈N be a test statistic on X ,
let g be a resampling method, let B ∈ N, let (Ki)i∈N be a sequence of uniformly distributed
random variables on {1, . . . ,Mm} and let (k1, . . . , kB) be a realization of (K1, . . . ,KB).
For all m ∈ N define the function cm : Xm → R satisfying that cm(x1, . . . , xm) is the

d(B + 1)(1− α)e+
B∑
i=1

1{Tm(gm,ki (x1,...,xm))=Tm(x1,...,xm)}-th largest value

in the vector (Tm(gm,k1(x1, . . . , xm)), . . . , Tm(gm,kB (x1, . . . , xm))) if

d(B + 1)(1− α)e+

B∑
i=1

1{Tm(gm,ki (x1,...,xm))=Tm(x1,...,xm)} ≤ B

and ∞ otherwise. Then the hypothesis test ϕ = (ϕm)m∈N defined for all m ∈ N and for
all (x1, . . . , xm) ∈ Xm by

ϕ(x1, . . . , xm) := 1{Tm(x1,...,xm)≥cm(x1,...,xm)},



CHAPTER 2. BACKGROUND MATERIAL 54

is equal to the α-Monte-Carlo approximated resampling test.

Proof The following calculation is straight forward:

1{p̂m(x1,...,xm)≤α}

= 1{
1
B

∑B
i=1 1{Tm(gm,ki

(x1,...,xm))≥Tm(x1,...,xm)}≤B+1
B

α− 1
B

}
= 1{

B+1
B

(1−α)≤ 1
B

∑B
i=1 1{Tm(gm,ki

(x1,...,xm))<Tm(x1,...,xm)}

}
= 1{Tm(x1,...,xm)≥cm(x1,...,xm)}

= ϕm(x1, . . . , xm).

This completes the prove of Proposition 2.64. �

The Monte-Carlo approximated resampling test is closely related to the Monte-Carlo
resampling distribution function. To see this observe that for large B it holds for all
(x1, . . . , xm) ∈ Xm that

cm(x1, . . . , xm) ≈ (R̂BTm(x1, . . . , xm))−1(1− α).

As mentioned above cm approximates the (1−α)-quantile of the Monte-Carlo resampling
distribution from above and gets closer as B increases.



Chapter 3

d-variable Hilbert-Schmidt independence
criterion

3.1 Problem description

Our goal is to develop a non parametric hypothesis test to determine whether the com-
ponents of a random vector X = (X1, . . . , Xd) are mutually independent based on m iid
observations X1, . . . ,Xm of the vector X.

X1, . . . , Xd are mutually independent if and only if

PX
1 ⊗ · · · ⊗ PXd

= P(X1,...,Xd). (3.1)

The central idea is to embed both PX1 ⊗ · · · ⊗ PXd and P(X1,...,Xd) into an appropriate
RKHS and then check whether the embedded elements are equal.

To keep an overview of all our assumptions, we summarize the setting used throughout
the rest of this work.

Setting 3.1 (dHSIC)
For all j ∈ {1, . . . , d}, let X j be a separable metric space and denote by X = X 1×· · ·×X d
the product space. Let (Ω,F ,P) be a probability space and for every j ∈ {1, . . . , d}, let
Xj : Ω → X j be a random variable with law PXj . Let (Xi)i∈N be a sequence of iid
copies of X = (X1, . . . , Xd). For j ∈ {1, . . . , d}, let kj : X j × X j → R be a continuous,
bounded, positive semi-definite and characteristic kernel on X j and denote by Hj the
corresponding RKHS. Let k = k1 ⊗ · · · ⊗ kd be the tensor product of the kernels kj and
let H = H1 ⊗ · · · ⊗ Hd be the tensor product of the RKHSs Hj. Let Π :Mf (X )→H be
the mean embedding function associated to k.

Observe that this setting has several nice consequences:

(i) H is RKHS with reproducing kernel k (see Theorem A.5)

(ii) k is continuous and bounded (see Section 2.2.3)

(iii) H is separable and only contains continuous functions (see Theorem 2.22)
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(iv) Π is injective because k is characteristic (see Definition 2.25)

3.2 dHSIC

The following section extends the Hilbert-Schmidt independence criterion (HSIC) from
two variables as described by Gretton et al. (2007) to the case of d variables.

The idea of the extension is to use the HSIC characterization via the mean embedding
described by Smola et al. (2007).

Definition 3.2 (dHSIC)
Assume Setting 3.1. Then, define the statistical functional

dHSIC
(
P(X1,...,Xd)

)
:=
∥∥∥Π
(
PX

1 ⊗ · · · ⊗ PXd
)
−Π

(
P(X1,...,Xd)

)∥∥∥2

H

and call it the d-variable Hilbert-Schmidt independence criterion (dHSIC).

The essential property of dHSIC is stated in the next theorem.

Theorem 3.3 (independence property of dHSIC)
Assume Setting 3.1. Then it holds that

dHSIC = 0 ⇐⇒ PX
1 ⊗ · · · ⊗ PXd

= P(X1,...,Xd)

Proof The proof of this statement follows from the definiteness of the norm and the fact
that Π is injective. �

In order to make dHSIC accessible for calculations, we express it in terms of the individual
kernels k1, . . . , kd.

Lemma 3.4 (expansion of dHSIC)
Assume Setting 3.1. Then it holds that

dHSIC = E

 d∏
j=1

kj
(
Xj

1 , X
j
2

)+E

 d∏
j=1

kj
(
Xj

2j−1, X
j
2j

)−2E

 d∏
j=1

kj
(
Xj

1 , X
j
j+1

)
Proof Using the definition of the mean embedding we get

dHSIC =
∥∥∥Π
(
PX

1 ⊗ · · · ⊗ PXd
)
−Π

(
P(X1,...,Xd)

)∥∥∥2

H

=

∥∥∥∥ d∏
j=1

E
(
kj
(
Xj

1 , ·
))
− E (k (X1, ·))

∥∥∥∥2

H

=

∥∥∥∥ d∏
j=1

E
(
kj
(
Xj

1 , ·
))∥∥∥∥2

H

+

∥∥∥∥E (k (X1, ·))
∥∥∥∥2

H

− 2

〈
d∏
j=1

E
(
kj
(
Xj

1 , ·
))

,E (k (X1, ·))

〉
H

(3.2)
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Next we simplify each term individually using the properties of the Bochner integral (see
Appendix A.3) and the properties of tensor Hilbert spaces (see Section 2.2.3).∥∥∥∥ d∏

j=1

E
(
kj
(
Xj

1 , ·
))∥∥∥∥2

H

=

d∏
j=1

∥∥∥∥E(kj (Xj
1 , ·
))∥∥∥∥2

Hj

=

d∏
j=1

〈
E
(
kj
(
Xj

1 , ·
))

,E
(
kj
(
Xj

1 , ·
))〉

Hj

=

d∏
j=1

E
(〈
kj
(
Xj

1 , ·
)
, kj
(
Xj

2 , ·
)〉
Hj

)

=

d∏
j=1

E
(
kj
(
Xj

1 , X
j
2

))

= E

 d∏
j=1

kj
(
Xj

2j−1, X
j
2j

) (3.3)

∥∥∥∥E (k (X1, ·))
∥∥∥∥2

H

=

〈
E (k (X1, ·)) ,E (k (X1, ·))

〉
H

= E
(〈

k (X1, ·) ,k (X2, ·)
〉
H

)
= E (k (X1,X2))

= E

 d∏
j=1

kj
(
Xj

1 , X
j
2

) (3.4)

〈
d∏
j=1

E
(
kj
(
Xj

1 , ·
))

,E (k (X1, ·))

〉
H

= E

〈E
 d∏
j=1

kj
(
Xj
j+1, ·

) ,
d∏
i=1

kj
(
Xj

1 , ·
)〉

H


= E

〈 d∏
j=1

kj
(
Xj
j+1, ·

)
,

d∏
j=1

kj
(
Xj

1 , ·
)〉

H


= E

 d∏
j=1

〈
kj
(
Xj
j+1, ·

)
, kj
(
Xj

1 , ·
)〉
Hj


= E

 d∏
j=1

kj
(
Xj

1 , X
j
j+1

) (3.5)

Combining (3.2), (3.3), (3.4) and (3.5) completes the proof of Lemma 3.4. �
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3.3 Estimating dHSIC

Next we define an estimator for dHSIC by estimating each of the expectation terms in
Lemma 3.4 by a V-statistic.

Definition 3.5 ( ̂dHSIC)
Assume Setting 3.1. Define the estimator d̂HSIC = (d̂HSICm)m∈N in such a way that
d̂HSICm : Xm → R are the measurable functions with the property that for all m ∈
{1, . . . , 2d − 1} it holds that d̂HSICm := 0 and for all m ∈ {2d, 2d + 1, . . . } and for all
(x1, . . . ,xm) ∈ Xm it holds that

d̂HSICm(x1, . . . ,xm) :=
1

m2

∑
M2(m)

d∏
j=1

kj
(
xji1 , x

j
i2

)

+
1

m2d

∑
M2d(m)

d∏
j=1

kj
(
xji2j−1

, xji2j

)

− 2

md+1

∑
Md+1(m)

d∏
j=1

kj
(
xji1 , x

j
ij+1

)
.

We call d̂HSIC the dHSIC V-estimator.

Whenever it is clear from the context, we drop the functional arguments and just write
d̂HSICm instead of d̂HSICm(X1, . . . ,Xm).

Now, define h : X 2d → R to be the function with the property that for all z1, . . . , z2d ∈ X
it holds

h(z1, . . . , z2d) =
1

(2d)!

∑
π∈S2d

[
d∏
j=1

kj
(
zjπ(1), z

j
π(2)

)
+

d∏
j=1

kj
(
zjπ(2j−1), z

j
π(2j)

)

− 2
d∏
j=1

kj
(
zjπ(1), z

j
π(j+1)

)] (3.6)

where S2d is the set of permutations on {1, . . . , 2d}. The function h serves as a core
function such that d̂HSIC is a V-statistic. This is made precise in the following lemma.

Lemma 3.6 (properties of h)
Assume Setting 3.1. It holds that

(i) h is symmetric,

(ii) h is continuous,

(iii) ∃C > 0 such that ∀z1, . . . , z2d ∈ X : |h(z1, . . . , z2d)| < C,

(iv) Vm(h) = d̂HSICm, and
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(v) θh = E (h(X1, . . . ,X2d)) = dHSIC.

Proof (i) This is immediate by construction.

(ii) This follows from the continuity of the kernels kj , which is assumed in Setting 3.1.

(iii) Under Setting 3.1 we assume that all kj ’s are bounded. Hence for all j ∈ {1, . . . , d}
let Cj > 0 such that for all z1, z2 ∈ X it holds that

|kj(z1, z2)| < Cj .

Thus it is clear that for all z1, . . . , z2d ∈ X it holds that

|h(z1, . . . , z2d)| < 4
d∏
j=1

Cj =: C.

(iv) Compute directly,

Vm(h) =
1

m2d

∑
M2d(m)

h (X1, . . . ,X2p)

=
1

(2d)!

∑
π∈S2d

1

m2d

∑
M2d(m)

[
d∏
j=1

kj
(
Xj
π(i1), X

j
π(i2)

)
+

d∏
j=1

kj
(
Xj
π(2j−1), X

j
π(i2j)

)

− 2
d∏
j=1

kj
(
Xj
π(i1), X

j
π(ij+1)

)]

=
1

(2d)!

∑
π∈S2d

[
1

m2

∑
M2(m)

d∏
j=1

kj
(
Xj
π(i1), X

j
π(i2)

)

+
1

m2d

∑
M2d(m)

d∏
j=1

kj
(
Xj
π(2j−1), X

j
π(i2j)

)

− 2

md+1

∑
Md+1(m)

d∏
j=1

kj
(
Xj
π(i1), X

j
π(ij+1)

)]

= d̂HSICm .
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(v) Again computing directly,

E (h(X1, . . . ,X2d)) =
1

(2d)!

∑
π∈S2d

[
E

 d∏
j=1

kj
(
Xj
π(1), X

j
π(2)

)
+ E

 d∏
j=1

kj
(
zjπ(2j−1), z

j
π(2j)

)
− 2E

 d∏
j=1

kj
(
zjπ(1), z

j
π(j+1)

)]

=
1

(2d)!

∑
π∈S2d

[
E

 d∏
j=1

kj
(
Xj

1 , X
j
2

)+ E

 d∏
j=1

kj
(
zj2j−1, z

j
2j

)
− 2E

 d∏
j=1

kj
(
zj1, z

j
j+1

)]
= dHSIC .

This completes the proof of Lemma 3.6 �

This means that using h as a core function we can express d̂HSIC as a V-statistic, which
allows us to apply the asymptotic results that have been developed in Section 2.3 to
analyze d̂HSIC.

3.4 Implementation details

In this section we describe how one can efficiently implement the dHSIC V-estimator
d̂HSIC. One efficient implementation is given in Algorithm 1, where the function Sum
takes the sum of all elements in a matrix, the function ColumnSum takes the sums of the
columns of a matrix and the operator ∗ is the element-wise multiplication operator.

For the two variable case (i.e. the standard HSIC setting) Gretton et al. (2007) express
d̂HSIC using the Gram matrices as

d̂HSIC(x1, . . . ,xm) =
1

m2
trace(K1HK2H)

where Kj is the Gram matrix of kj given x1, . . . ,xm and H is the (m × m)-matrix
satisfying for all i, j ∈ {1, . . . ,m} that

Hi,j =

{
− 1
m if i 6= j

m−1
m if i = j.
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Algorithm 1 computing the dHSIC V-estimator
1: procedure dHSIC(x1, . . . ,xm)
2: for j = 1 : d do
3: Kj ← Gram matrix of kernel kj given x1, . . . ,xm

4: term1← (m×m)-matrix with all entries equal to 1

5: term2← 1

6: term3← (1×m)-matrix with all entries equal to 2
m

7: for j = 1 : d do
8: term1← term1 ∗Kj

9: term2← 1
m2 · term2 · Sum(Kj)

10: term3← 1
m · term3 ∗ ColumnSum(Kj)

11: term1← Sum(term1)

12: term3← Sum(term3)

13: dHSIC← 1
m2 · term1 · term2 · term3

14: return dHSIC

While this representation is useful for computations by hand it should not be implemented
directly as it leads to inefficient code. A better solution is to use following trace formula

trace(AB>) =
∑
i,j

Ai,jBi,j . (3.7)

The complexity of this operation is only O
(
m2
)
, while even the most efficient implemen-

tation of the matrix multiplication has a complexity strictly large than this. If the trace
formula (3.7) is used the resulting code is similar to the one given in Algorithm 1.
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Hypothesis tests based on dHSIC

As before, we write X = (X1, . . . , Xd) and X denotes the product state space, see Setting
3.1. In this section we derive four statistical hypothesis tests to test the null hypothesis

H0 :=

{
PX ∈ P(X )

∣∣∣∃ measurable X : Ω→ X with law PX

such that PX = PX
1 ⊗ · · · ⊗ PXd

} (4.1)

against the alternative

HA :=

{
PX ∈ P(X )

∣∣∣ ∀ measurable X : Ω→ X with law PX

it holds that PX 6= PX
1 ⊗ · · · ⊗ PXd

}
.

(4.2)

Since dHSIC is 0 under H0 and positive otherwise we choose to use m · d̂HSICm as
test statistic. Similarly as in (2.66) we define a test ϕ = (ϕm)m∈N satisfying for all m ∈
{1, . . . , 2d−1} that ϕm := 0 and for allm ∈ {2d, 2d+1, . . . } and for all (x1, . . . ,xm) ∈ Xm

that

ϕm(x1, . . . ,xm) :=

{
0 if m · d̂HSICm(x1, . . . ,xm) ≤ cm(x1, . . . ,xm)

1 if m · d̂HSICm(x1, . . . ,xm) > cm(x1, . . . ,xm)
(4.3)

where the threshold c = (cm)m∈N remains to be chosen.

Assume there exists a function G : P(X ) × R → [0, 1] satisfying for all X1,X2, . . .
iid∼

PX ∈ H0 and for all t ∈ R that

lim
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) ≤ t

)
= G

(
PX
)

(t). (4.4)

In particular this means that for every fixed X1,X2, . . .
iid∼ PX ∈ H0 the random vari-

able m · d̂HSICm(X1, . . . ,Xm) has a limiting distribution. The idea is to find functions
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(Gm)m∈N with Gm : Xm × R → [0, 1] satisfying for all X1,X2, . . .
iid∼ PX ∈ H0 it holds

P-a.s. that
lim
m→∞

Gm(X1, . . . ,Xm)(t) = G
(
PX
)

(t).

Then, we define the threshold to satisfy for all (x1, . . . ,xm) ∈ Xm that

cm(x1, . . . ,xm) := (Gm(x1, . . . ,xm))−1 (1− α).

Using a classical argument involving Slutsky’s theorem it can be shown that the cor-
responding test has pointwise asymptotic level α. If Gm additionally satisfies for all
X1,X2, . . .

iid∼ PX ∈ HA that

lim
m→∞

Gm(X1, . . . ,Xm)(t) = G
(
PX

1 ⊗ · · · ⊗ PXd
)

(t),

then one can additionally show that this test is pointwise consistent.

In Section 4.1 we consider some of the asymptotic properties of the test statistic m ·
d̂HSICm. In particular we show the existence of the function G : P(X ) × R → [0, 1]
satisfying (4.4). We then construct four hypothesis tests of the form (4.3). The first
two are a permutation test and a bootstrap test which are discussed in Section 4.2. Both
tests are based on resampling tests and hence do not relay on an explicit knowledge of the
function G. In Section 4.3 we consider a third test which is based on an approximation
of G as a gamma distribution and finally in Section 4.4 we give a fourth test which uses
the explicit form of G.

The following table summarizes the properties of the four tests.

Hypothesis test consistency level speed

Permutation1 unknown valid
(Prop. 4.5)

slow

Bootstrap2 pointwise
(Prop. 4.10)

pointwise
asymptotic
(Prop. 4.9)

slow

Gamma approximation no guarantee no guarantee fast

Eigenvalue approach3 pointwise
(Conjecture
4.20)

pointwise
asymptotic
(Conjecture
4.20)

medium

1For implementation purposes one can use the Monte-Carlo approximation. This leads to a reasonably
fast implementation with similar level and consistency results. Further details are given at the end of
Section 4.2.1 and Section 4.2.2.

2See footnote 1.
3The final results are missing a small step in the approximation.
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4.1 Asymptotic behavior of the test statistic

All results in this section make use of the theory of U-and V-statistics introduced in
Section 2.3.

4.1.1 Under the alternative hypothesis

We first determine the asymptotic distribution of
√
m(d̂HSICm−dHSIC) using Theo-

rem 2.41 from the theory of V-statistics. This leads to the following theorem (for the two
variable HSIC, see Gretton et al., 2007, Theorem 1).

Theorem 4.1 (asymptotic distribution of
√
m · ̂dHSICm under HA)

Assume Setting 3.1 and recall (2.7). If ξ1(h) > 0, then under HA it holds that
√
m
(

d̂HSICm−dHSIC
)

d−→ N
(
0, 4d2ξ1(h)

)
as m→∞. If ξ1(h) = 0, then

√
m
(

d̂HSICm−dHSIC
)

d−→ 0

as m→∞.

Proof Use Lemma 3.6 to observe that d̂HSIC is simply the V-statistic Vm(h) with θh =
dHSIC. Moreover, again by Lemma 3.6 it holds that h is bounded and continuous. If
ξ1(h) > 0 then we can apply Theorem 2.41 to see that,

√
m
(

d̂HSICm−dHSIC
)

d−→ N
(
0, (2d)2ξ1(h)

)
as m→∞. Next assume ξ1(h) = 0, then by Theorem 2.39 it holds that

E
(
m
(

d̂HSICm−dHSIC
)2
)

= mVar
(

d̂HSIC
)

= O
(
m−1

)
and since convergence in second moment implies convergence in distribution this com-
pletes the proof of Theorem 4.1. �

As a direct corollary we get that m · d̂HSICm diverges under HA in the following sense.

Corollary 4.2 (asymptotic distribution of m · ̂dHSICm under HA)
Assume Setting 3.1. Then under HA it holds for all t ∈ R that

lim
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) ≤ t

)
= 0.

Proof Let t ∈ R and X1,X2, . . .
iid∼ PX ∈ HA then

P
(
m · d̂HSICm(X1, . . . ,Xm) ≤ t

)
= P

(√
m(d̂HSICm(X1, . . . ,Xm)− dHSIC) ≤ t√

m
−
√
mdHSIC

)
.

So Corollary B.3 together with Theorem 4.1 completes the proof of Corollary 4.2. �
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This Corollary is the key result needed to show consistency for both the bootstrap test
and the eigenvalue approach based test.

4.1.2 Under the null hypothesis

The next step is to determine the asymptotic distribution of m · d̂HSICm under H0. This
is done in the following theorem (for the two variable HSIC, see Gretton et al., 2007,
Theorem 2).

Theorem 4.3 (asymptotic distribution of m · ̂dHSICm under H0)
Assume Setting 3.1 and recall (2.7). If ξ2(h) > 0, let (Zi)i∈N be a sequence of independent
standard normal random variables on R, let Th2 ∈ L(L2(P(X1,...,Xd), |·|R)) with the property
that for every f ∈ L2(P(X1,...,Xd), |·|R) and for every x ∈ X it holds that

(Th2(f)) (x) =

∫
X
h2(x,y)f(y)P(X1,...,Xd)(dy)

and let (λi)i∈N be the eigenvalues of Th2, then under H0 it holds that

m · d̂HSICm
d−→
(

2d

2

) ∞∑
i=1

λiZ
2
i

as m→∞. If ξ2(h) = 0 then under H0 it holds that

m · d̂HSICm
d−→
(

2d

2

) ∞∑
i=1

λi

as m→∞.

Proof Use Lemma 3.6 to observe that d̂HSICm is simply the V-statistic Vm(h) with
θh = dHSIC. By Lemma C.3 it holds that ξ1(h) = 0 under H0 and moreover, again
by Lemma 3.6 it holds that h is bounded and continuous. If ξ2(h) > 0, we can apply
Theorem 2.43 to see that,

m · d̂HSICm
d−→
(

2d

2

) ∞∑
i=1

λiZ
2
i

as m → ∞. If ξ2(h) = 0, we can apply Theorem 2.39 to see that limn→∞Var(n ·
d̂HSICn) = 0. Combining this with Theorem 2.40 and Lemma 2.42 hence leads to

n · d̂HSICn
d−→
(

2d

2

) ∞∑
i=1

λi.

as m→∞, which completes the proof of Theorem 4.3. �

Unfortunately, the asymptotic distribution under H0 depends on whether ξ2(h) > 0 or
ξ2(h) = 0. This means that we always have to consider both cases, which becomes quite
repetitive. In the following analysis we will therefore always assume that ξ2(h) > 0 when
applying Theorem 4.3. The case ξ2(h) = 0 has to be analyzed in a similar fashion.
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4.2 Permutation/Bootstrap

In this section we construct two types of resampling tests for dHSIC. The first is a
permutation test and the second is a bootstrap test. The main ingredient for a resampling
test is the resampling method.

Assume Setting 3.1 and fix m ∈ N. For every function ψ = (ψ1, . . . , ψd) such that
for all i ∈ {1, . . . , d} it holds that ψi : {1, . . . ,m} → {1, . . . ,m} define the function
gm,ψ : Xm → Xm satisfying for all (x1, . . . ,xm) ∈ Xm that

gm,ψ(x1, . . . ,xm) :=
(
xψm,1, . . . ,x

ψ
m,m

)
(4.5)

where xψm,i :=
(
x1
ψ1(i), . . . , x

d
ψd(i)

)
. The diagram in (4.6) illustrates how gm,ψ acts on the

sample (x1, . . . ,xm).

x1 x1
1 · · · xd1 xψm,1 x1

ψ1(1) · · · xd
ψd(1)

...
...

...
gm,ψ−→

...
...

...
xm x1

m · · · xdm xψm,m x1
ψ1(m) · · · xd

ψd(m)

(4.6)

Define
Bm :=

{
ψ : {1, . . . ,m} → {1, . . . ,m} | ψ is a function

}
(4.7)

then for a subset Am ⊆ Bd
m using the terminology of Section 2.4.2 we can define a

resampling method
g := ((gm,ψ)ψ∈Am)m∈N . (4.8)

In the next two section we consider two explicit tests based on this resampling method.

4.2.1 Permutation test

The permutation test is the resampling test corresponding to the resampling method in
(4.8) with Am = (Sm)d, where Sm is the set of permutations on {1, . . . ,m}.

Definition 4.4 (permutation test for dHSIC)
Assume Setting 3.1, assume α ∈ (0, 1) and for all m ∈ N and for all ψ ∈ (Sm)d let gm,ψ
be defined as in (4.5). Moreover, for all m ∈ {2d, 2d+1, . . . } let R̂m : Xm×R→ [0, 1] be
the resampling distribution functions defined for all (x1, . . . ,xm) ∈ Xm and for all t ∈ R
by

R̂m(x1, . . . ,xm)(t) :=
1

(m!)d

∑
ψ∈(Sm)d

1{m·d̂HSICm(gm,ψ(x1,...,xm))≤t}.

Then the α-resampling hypothesis test ϕ = (ϕm)m∈N defined for all m ∈ {1, . . . , 2d − 1}
by ϕm := 0 and for all m ∈ {2d, 2d+ 1, . . . } and for all (x1, . . . ,xm) ∈ Xm by

ϕm(x1, . . . ,xm) := 1{
m·d̂HSICm(x1,...,xm)>(R̂m(x1,...,xm))−1(1−α)

},
is called α-permutation test for dHSIC.
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In literature, resampling tests, that similar to the permutation test for dHSIC, are based
on resampling schemes constructed by permutations are called permutation tests. As an
immediate consequence of Theorem 2.59 it follows that ϕ has valid level.

Proposition 4.5 (permutation test for dHSIC has valid level)
Assume Setting 3.1 and let H0 and HA be defined as in (4.1) and (4.2). Then for all
α ∈ (0, 1) the α-permutation test for dHSIC has level α when testing H0 against HA.

Proof Fix m ∈ N, under H0, i.e. X1,X2, . . .
iid∼ PX ∈ H0, it holds that the individual

coordinates of Xi are independent. Hence, for all ψ ∈ (Sm)d it holds that (X1, . . . ,Xm)

is equal in distribution to (Xψ
1 , . . . ,X

ψ
m), so in particular, we have that

gm,ψ(X1, . . . ,Xm) is equal in distribution to (X1, . . . ,Xm). (4.9)

Moreover since (Sm)d has a group structure we can apply Theorem 2.59 to get that ϕ has
level α, which completes the proof of Proposition 4.5. �

It turns out that proving that the permutation test for dHSIC has pointwise consistency
is rather difficult because for X1,X2, . . .

iid∼ PX ∈ HA it is not straight forward to link
the resampling distribution function R̂m(X1, . . . ,Xm) with the limit distribution function
G(PX1 ⊗ · · · ⊗ PXd

).

The size of the set (Sm)d is given by (m!)d which grows very fast. For implementation
purposes we therefore generally use a Monte-Carlo approximated version as defined in
Definition 2.62. Given that the underlying probability distribution PX is continuous we
satisfy all requirements of Proposition 2.63, which implies that the Monte-Carlo approxi-
mated permutation test for dHSIC also has valid level. For more details see Section 4.5.

4.2.2 Bootstrap test

The bootstrap test is the resampling test corresponding to the resampling method in (4.8)
with Am = Bd

m.

Definition 4.6 (bootstrap test for dHSIC)
Assume Setting 3.1, assume α ∈ (0, 1) and for all m ∈ N and for all ψ ∈ Bd

m let
the function gm,ψ be defined as in (4.5). Moreover, for all m ∈ {2d, 2d+ 1, . . . } let R̂m :
Xm×R→ [0, 1] be the resampling distribution functions defined for all (x1, . . . ,xm) ∈ Xm

and for all t ∈ R by

R̂m(x1, . . . ,xm)(t) :=
1

mmd

∑
ψ∈Bdm

1{m·d̂HSICm(gm,ψ(x1,...,xm))≤t}.

Then the resampling hypothesis test ϕ = (ϕm)m∈N defined for all m ∈ {1, . . . , 2d− 1} by
ϕm := 0 and for all m ∈ {2d, 2d+ 1, . . . } and for all (x1, . . . ,xm) ∈ Xm by

ϕm(x1, . . . ,xm) := 1{
m·d̂HSICm(x1,...,xm)>(R̂m(x1,...,xm))−1(1−α)

}
is called α-bootstrap test for dHSIC.
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In order to prove level and consistency results we need to introduce some additional
notation. For j ∈ {1, . . . , d} denote by P̂Xj

m the empirical distribution corresponding to
Xj

1 , . . . , X
j
m, i.e.

P̂X
j

m =
1

m

m∑
i=1

δ
Xj
i
.

Definition 4.7 (empirical product distribution function)
Assume Setting 3.1, then the function F̂m : Xm×Rd → [0, 1] satisfying for all (x1, . . . ,xm) ∈
Xm and for all t ∈ Rd that

F̂m(x1, . . . ,xm)(t) :=
d∏
j=1

(
1

m

m∑
i=1

1{xji≤tj}

)

is called the empirical product distribution function.

It can be easily shown that the distribution function corresponding to the distribution
P̂X1

m ⊗ · · · ⊗ P̂X
d

m is given by the empirical product distribution function F̂m.

The following proposition shows that random draws from the resampling distribution
corresponds to independent draws from the empirical product distribution P̂X1

m ⊗· · ·⊗P̂X
d

m .

Proposition 4.8 (bootstrapping property)
Assume Setting 3.1, let m ∈ N, and for all ψ ∈ Bd

m let gm,ψ be defined as in (4.5), let Ψ

be a random variable with uniform distribution on Bd
m and let F̂m be the empirical product

distribution function. Then it holds for all (x1, . . . ,xm) ∈ Xm that

gm,Ψ(x1, . . . ,xm) =
(
xΨ
m,1, . . . ,x

Ψ
m,m

)
are m iid random variables with distribution function F̂m(x1, . . . ,xm).

Proof Let (Ω̃, F̃ , P̃) be the probability space such that Ψ = (Ψ1, . . . ,Ψd) : Ω̃ → Bd
n.

Then, by the properties of the uniform distribution it holds that Ψ1, . . . ,Ψd are iid with
uniform distribution on Bm. This implies that for all (x1, . . . ,xm) ∈ Xm, for all i ∈
{1, . . . ,m} and for all t ∈ Rd it holds that

P̃
(
xΨ
m,i ≤ t

)
=

d∏
j=1

P̃
(
xj
m,Ψj(i)

≤ tj
)

=

d∏
j=1

 1

|Bm|
∑
ψ∈B

1{xj
m,ψ(i)

≤tj}


=

d∏
j=1

(
1

m

m∑
l=1

1{xjm,i≤tj}

)
.
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Hence, it holds for all i ∈ {1, . . . ,m} that xΨ
m,i has distribution function F̂m(x1, . . . ,xm).

Moreover, by an explicit calculation it holds for all i, j ∈ {1, . . . ,m} with i 6= j and for
all k, l ∈ {1, . . . ,m}d that

P̃
(
Ψ(i) = k,Ψ(j) = l

)
= P̃

(
Ψ(i) = k

)
P̃
(
Ψ(j) = l

)
,

which implies that Ψ(i) is independent of Ψ(j). Consequently, it also holds that xΨ
m,i is

independent of xΨ
j . This finally proves that for all (x1, . . . ,xm) ∈ Xm it holds that

gm,Ψ(x1, . . . ,xm) =
(
xΨ
m,1, . . . ,x

Ψ
m,m

)
are iid random variables with distribution function F̂m(x1, . . . ,xm), which completes the
proof of Proposition 4.8. �

We can now prove that the α-bootstrap test for dHSIC has pointwise asymptotic level α.

Proposition 4.9 (bootstrap test for dHSIC has pointwise asymptotic level)
Assume Setting 3.1 and let H0 and HA be defined as in (4.1) and (4.2). Then for all
α ∈ (0, 1) the α-bootstrap test for mHSIC has pointwise asymptotic level α when testing
H0 against HA.

Proof Let X1,X2, . . .
iid∼ PX ∈ H0 be fixed and begin by introducing the following

notation:

· Let (Zj)j∈N be a sequence of independent standard normal random variables on R, let
Th2 ∈ L(L2(PX, |·|R)) with the property that for every f ∈ L2(PX, |·|R) and for every
x ∈ X it holds that

(Th2(f)) (x) =

∫
X
h2(x,y)f(y)PX(dy)

and let (λj)j∈N be the eigenvalues of Th2 .

· Let F̂m be the empirical product distribution function and define for all t ∈ Rd the
population product distribution function by

F (t) :=
(
PX
) (

(−∞, t1]× · · · × (−∞, td]
)

=
d∏
j=1

P
(
Xj ≤ tj

)
By Theorem 4.3 it follows that

m · d̂HSICm(X1, . . . ,Xm)
d−→
(

2d

2

) ∞∑
i=1

λiZ
2
i (4.10)

as m→∞. Moreover, applying the Glivenko-Cantelli theorem (e.g. van der Vaart, 1998,
Theorem 19.1), which extends the strong law of large numbers for empirical distributions
to uniform convergence, shows that there exists a subset A0 ⊆ Ω such that P(A0) = 1
and such that for all ω ∈ A0 it holds for all t ∈ Rd that

lim
m→∞

F̂m(X1(ω), . . . ,Xm(ω))(t) = F (t). (4.11)



CHAPTER 4. HYPOTHESIS TESTS BASED ON dHSIC 70

Next, for all m ∈ N let Ψm be a uniformly distributed random variable on Bd
m inde-

pendent of X and (Xi)i∈N. Then, by Proposition 4.8 it holds for all m ∈ N and for all
(x1, . . . ,xm) ∈ Xm that

gm,Ψm(x1, . . . ,xm) =
(
xΨm
m,1 , . . . ,x

Ψm
m,m

)
are iid random variables with distribution function F̂m(x1, . . . ,xm). Hence, for fixed
ω ∈ A0 and for all i ∈ N define xi := Xi(ω), then by (4.11) it holds that

xΨm
m,i

d−→ X

as m→∞. Hence, we are in the same setting as described in Setting 2.44.

Since both PX ∈ H0 and P̂X1

m ⊗ · · · ⊗ P̂X
d

m ∈ H0 it holds by Lemma C.3 for all z ∈ X that

h1(z) = E (h(z,X2, . . . ,X2d)) = 0

and for all m ∈ {2d, 2d+ 1, . . . } and for all z ∈ X that

hm1 (z) = E
(
h(z,xΨm

m,2 , . . . ,x
Ψm
m,2d)

)
= 0,

where h is defined as in (3.6). Moreover, it holds by Theorem 3.3 that

θh = E (h(X1, . . . ,X2d)) = dHSIC
(
PX
)

= 0.

We therefore satisfy all requirements of Theorem 2.48 (the condition ξ2(h) > 0 is assumed,
see remark after Theorem 4.3) and get that

m · d̂HSICm(xΨm
m,1 , . . . ,x

Ψm
m,m) = mṼm(h)

d−→
(

2d

2

) ∞∑
i=1

λiZ
2
i (4.12)

as m→∞.

Let G : R→ (0, 1) be the distribution function of
(

2d
2

)∑∞
i=1 λiZ

2
i , then by (4.12) it holds

for all t ∈ R that

lim
m→∞

R̂m(x1, . . . ,xm)(t) = lim
m→∞

1

mmd

∑
ψ∈Bdm

1{m·d̂HSICm(xψm,1,...,x
ψ
m,m)≤t}

= lim
m→∞

E
(
1{m·d̂HSICm(xΨm

m,1 ,...,x
Ψm
m,m)≤t}

)
= lim

m→∞
P
(
m · d̂HSICm(xΨm

m,1 , . . . ,x
Ψm
m,m) ≤ t

)
= G(t).

Since G is continuous Theorem B.1 implies that for all t ∈ (0, 1) that

lim
m→∞

(
R̂m(x1, . . . ,xm)

)−1
(t) = G−1(t).
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Recall that P(A0) = 1 which implies that it holds P-a.s. that

lim
m→∞

(
R̂m(X1, . . . ,Xm)

)−1
(1− α) = G−1(1− α). (4.13)

Finally, we can perform the following calculation

lim sup
m→∞

P (ϕm(X1, . . . ,Xm) = 1)

= lim sup
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) >

(
R̂m(X1, . . . ,Xm)

)−1
(1− α)

)
= 1− lim inf

m→∞
P
(
m · d̂HSICm(X1, . . . ,Xm) ≤

(
R̂m(X1, . . . ,Xm)

)−1
(1− α)

)
= 1−G(G−1(1− α)) = α,

where the last step uses Corollary B.3 together with (4.10) and (4.13). This completes
the proof of Proposition 4.9. �

The following proposition shows that the bootstrap test is also pointwise consistent against
any alternative. The proof is very similar to the proof of Proposition 4.9 the main
difference being that in Proposition 4.9 we consider the case X1,X2, . . .

iid∼ PX ∈ H0 while
in Proposition 4.10 we consider X1,X2, . . .

iid∼ PX ∈ HA.

Proposition 4.10 (consistency of the bootstrap test for dHSIC)
Assume Setting 3.1 and let H0 and HA be defined as in (4.1) and (4.2). Then for all
α ∈ (0, 1) the α-bootstrap test is pointwise consistent when testing H0 against HA.

Proof Let X1,X2, . . .
iid∼ PX ∈ HA be fixed and begin by introducing the following

notation:

· Let (Zj)j∈N be a sequence of independent standard normal random variables on R, let
Th2 ∈ L(L2(PX1 ⊗ · · · ⊗ PXd

, |·|R)) with the property that for every f ∈ L2(PX1 ⊗ · · · ⊗
PXd

, |·|R) and for every x ∈ X it holds that

(Th2(f)) (x) =

∫
X
h2(x,y)f(y)PX

1 ⊗ · · · ⊗ PXd
(dy) (4.14)

and let (λj)j∈N be the eigenvalues of Th2 .

· Let F̂m be the empirical product distribution function and define for all t ∈ Rd the
population product distribution function by

F (t) :=
(
PX

1 ⊗ · · · ⊗ PXd
) (

(−∞, t1]× · · · × (−∞, td]
)

=
d∏
j=1

P
(
Xj ≤ tj

)
Applying the Glivenko-Cantelli theorem (e.g. van der Vaart, 1998, Theorem 19.1), which
extends the strong law of large numbers for empirical distributions to uniform convergence,
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shows that there exists a subset A0 ⊆ Ω such that P(A0) = 1 and such that for all ω ∈ A0

it holds for all t ∈ Rd that

lim
m→∞

F̂m(X1(ω), . . . ,Xm(ω))(t) = F (t). (4.15)

Next, for all m ∈ N let Ψm be a uniformly distributed random variable on Bd
m inde-

pendent of X and (Xi)i∈N. Then, by Proposition 4.8 it holds for all m ∈ N and for all
(x1, . . . ,xm) ∈ Xm that

gm,Ψm(x1, . . . ,xm) =
(
xΨm
m,1 , . . . ,x

Ψm
m,m

)
are iid random variables with distribution function F̂m(x1, . . . ,xm).

Fix ω ∈ A0, let (X∗i )i∈N be iid sequence of random variables with distribution PX1⊗· · ·⊗
PXd and for all i ∈ N define xi := Xi(ω). Then, by (4.15) it holds that

xΨm
m,i

d−→ X∗i

as m→∞. Hence, we are in the same setting as described in Setting 2.44.

Since both PX1 ⊗ · · · ⊗ PXd ∈ H0 and P̂X1

m ⊗ · · · ⊗ P̂X
d

m ∈ H0 it holds by Lemma C.3 for
all z ∈ X that

h1(z) = E (h(z,X∗2, . . . ,X
∗
2d)) = 0

and for all m ∈ {2d, 2d+ 1, . . . } and for all z ∈ X that

hm1 (z) = E
(
h(z,xΨm

m,2 , . . . ,x
Ψm
m,2d)

)
= 0,

where h is defined as in (3.6). Moreover, it holds by Theorem 3.3 that

θh = E (h(X∗1, . . . ,X
∗
2d)) = dHSIC

(
PX

1 ⊗ · · · ⊗ PXd
)

= 0.

We therefore satisfy all requirements of Theorem 2.48 (the condition ξ2(h) > 0 is assumed,
see remark after Theorem 4.3) and get that

m · d̂HSICm(xΨm
m,1 , . . . ,x

Ψm
m,m) = mṼm(h)

d−→
(

2d

2

) ∞∑
i=1

λiZ
2
i (4.16)

as m→∞, where the λi’s are defined as the eigenvalues of the operator in (4.14).

Let G : R→ (0, 1) be the distribution function of
(

2d
2

)∑∞
i=1 λiZ

2
i , then by (4.16) it holds

for all t ∈ R that

lim
m→∞

R̂m(x1, . . . ,xm)(t) = lim
m→∞

1

mmd

∑
ψ∈Bdm

1{m·d̂HSICm(xψm,1,...,x
ψ
m,m)≤t}

= lim
m→∞

E
(
1{m·d̂HSICm(xΨm

m,1 ,...,x
Ψm
m,m)≤t}

)
= lim

m→∞
P
(
m · d̂HSICm(xΨm

m,1 , . . . ,x
Ψm
m,m) ≤ t

)
= G(t).
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Since G is continuous Theorem B.1 implies for all t ∈ (0, 1) that

lim
m→∞

(
R̂m(x1, . . . ,xm)

)−1
(t) = G−1(t).

Therefore we have shown that for all ω ∈ A0 it holds that

lim
m→∞

(
R̂m(X1(ω), . . . ,Xm(ω))

)−1
(1− α) = G−1(1− α). (4.17)

Introduce the set

A1 :=
{
ω ∈ Ω

∣∣∀t ∈ R : lim
m→∞

1{m·d̂HSICm(X1(ω),...,Xm(ω))≤t} = 0
}
.

By Corollary 4.2 it holds that P(A1) = 1, which implies that P(A0 ∩ A1) = 1. Let
ω ∈ A0 ∩ A1, then by (4.17) there exists a constant t∗ ∈ R such that for all m ∈ N it
holds that (

R̂m(X1(ω), . . . ,Xm(ω))
)−1

(1− α) ≤ t∗

and hence

lim
m→∞

1{
m·d̂HSICm(X1(ω),...,Xm(ω))≤(R̂m(X1(ω),...,Xm(ω)))

−1
(1−α)

}
≤ lim

m→∞
1{m·d̂HSICm(X1(ω),...,Xm(ω))≤t∗} = 0.

This proves that P-a.s. it holds that

lim
m→∞

1{
m·d̂HSICm(X1,...,Xm)≤(R̂m(X1,...,Xm))

−1
(1−α)

} = 0

and applying the dominated convergence theorem we also get

lim
m→∞

P (ϕm(X1, . . . ,Xm) = 0)

= lim
m→∞

E
(
1{

m·d̂HSICm(X1,...,Xm)≤(R̂m(X1,...,Xm))
−1

(1−α)
})

= 0,

which completes the proof of Proposition 4.10. �

Similar to the case of the permutation test the size of the set (Bm)d is given bymmd which
grows very fast. For implementation purposes we therefore generally use a Monte-Carlo
approximated version as defined in Definition 2.62. Using Proposition 2.61 and remarks
at the end of Section 2.4.2, it follows that the asymptotic properties of the boostrap based
test are preserved in the Monte-Carlo approximations. For more details see Section 4.5.
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4.3 Gamma approximation

We showed in Theorem 4.3 that the asymptotic distribution of m · d̂HSICm is given by(
2d

2

) ∞∑
i=1

λiZ
2
i .

The essential idea behind the gamma approximation is that a distribution of the form
∞∑
i=1

λiZ
2
i

can be approximated fairly well by a gamma distribution with matched first and second
moments (see Satterthwaite, 1946, for basic empirical evidence). This has, however, only
been shown empirically and there are no guarantees that it leads to good results in the
large sample limit. Nevertheless, since it is very fast and in most settings leads to good
results it turns out to be very useful.

The gamma distribution with parameters α and β is denoted by Gamma(α, β) and corre-
sponds to the distribution with density

f(x) =
xα−1e

x
β

βαΓ(α)

where Γ(t) =
∫∞

0 xt−1e−xdx is the gamma function. The first two moments of the
Gamma(α, β)-distributed random variable Y are given by E(Y ) = αβ and Var(Y ) = αβ2.
In order to match the first two moments we define for X1,X2, . . .

iid∼ PX ∈ H0 the two
parameters

αm(PX) :=

(
E
(

d̂HSICm

))2

Var
(

d̂HSICm

) and βm(PX) :=
mVar

(
d̂HSICm

)
E
(

d̂HSICm

) . (4.18)

Then we make the approximation

m · d̂HSICm(X1, . . . ,Xm) ∼ Gamma
(
αm(PX), βm(PX)

)
. (4.19)

In order to use this approximation in a hypothesis test we first need to find a method to
calculate αm(PX) and βm(PX) based only on the first m observations X1, . . . ,Xm. The
following two theorems give expansions of the moments in terms of the kernel.

Lemma 4.11 (mean of ̂dHSIC)
Assume Setting 3.1. Then under H0 it holds that,

E
(

d̂HSICm

)
=

1

m
− 1

m

d∑
r=1

∏
j 6=r
E
(
kj(Xj

1 , X
j
2)
)+

d− 1

m

d∏
j=1

E
(
kj(Xj

1 , X
j
2)
)

+O
(
m−2

)
as m→∞.
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Proof Due to Lemma 3.6 we know that d̂HSICm is a V-statistic with core function h.
Under H0 it holds that θh = 0 and thus applying Lemma 2.40 results in

E
(

d̂HSICm

)
=

1

m

(
2d

2

)
E (h2(X1,X1)) +O

(
m−2

)
.

We can use Lemma C.2 to explicitly calculate
(

2p
2

)
E(h2(X1,X1)), which together with the

independence assumption under H0 simplifies to the desired expression. This concludes
the proof of Lemma 4.11. �

Lemma 4.12 (variance of ̂dHSIC)
Assume Setting 3.1. Then under H0 it holds that,

Var
(

d̂HSICm

)
= 2

(m− 2d)!

m!

(m− 2d)!

(m− 4d+ 2)!

[
d∏
j=1

e1(j) + (d− 1)2
d∏
j=1

e0(j)2

+ 2(d− 1)

d∏
j=1

e2(j) +

d∑
j=1

e1(j)
∏
r 6=j

e0(r)2

− 2

d∑
j=1

e1(j)
∏
r 6=j

e2(r)− 2(d− 1)

d∑
j=1

e2(j)
∏
r 6=j

e0(r)2

+
∑
j 6=l

e2(j)e2(l)
∏
r 6=j,l

e0(r)2

]
+O

(
m−

5
2

)
as m→∞ and where for all j ∈ {1, . . . , d} we set

e0(j) = E
(
kj(Xj

1 , X
j
2)
)
, e1(j) = E

(
kj(Xj

1 , X
j
2)2
)
, e2(j) = E

Xj
1

(
E
Xj

2

(
kj(Xj

1 , X
j
2)
)2
)
.

Proof Due to Lemma 3.6 we know that d̂HSIC is a V-statistic with core function h.
Applying Lemma 2.39 thus results in

Var
(

d̂HSICm

)
=

(
m

2d

)−1(2d

2

)(
m− 2d

2d− 2

)
ξ2 +O

(
m−

5
2

)
.

Using Lemma C.2 we get that

ξ2 = E
(
h2(X1,X2)2

)
=

(
2d

2

)−2

E

( 10∑
i=1

ai

)2


=

(
2d

2

)−2 10∑
i,j=1

E (aiaj) .

Each term E(aiaj) can be explicitly calculated and simplified using the independence
properties under H0 (very tedious). This concludes the proof of Lemma 4.12. �
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Based on these two lemmas we only need a method to calculate the terms

(i) e0(j) := E
(
kj(Xj

1 , X
j
2)
)
,

(ii) e1(j) := E
(
kj(Xj

1 , X
j
2)2
)
,

(iii) e2(j) := E
Xj

1

(
E
Xj

2

(
kj(Xj

1 , X
j
2)
)2
)
.

One obvious choice would be to use a U-statistic for each expectation term as this would
not add any bias. It however turns out that a V-statistic also does not add any bias
in this particular case. This is due to Theorem 2.40, which shows that the bias of a
V-statistic is of order O

(
m−1

)
and hence is consumed by the error terms in Lemma 4.11

and Lemma 4.12. The V-statistics for these terms are given for all (x1, . . . ,xm) ∈ Xm by

(i) ê0(j)(x1, . . . ,xm) := 1
m2

∑m
i1,i2=1 k

j(xji1 , x
j
i2

),

(ii) ê1(j)(x1, . . . ,xm) := 1
m2

∑m
i1,i2=1 k

j(xji1 , x
j
i2

)2,

(iii) ê2(j)(x1, . . . ,xm) := 1
m3

∑m
i2=1

(∑m
i1=1 k

j(xji1 , x
j
i2

)
)2

.

Based on these terms we can define the estimator Êxpm : Xm → R for all (x1, . . . ,xm) ∈
Xm by

Êxpm(x1, . . . ,xm) :=
1

m
− 1

m

d∑
r=1

∏
j 6=r

ê0(j)(x1, . . . ,xm) +
d− 1

m

d∏
j=1

ê0(j)(x1, . . . ,xm)

(4.20)
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and the estimator V̂arm : Xm → R for all (x1, . . . ,xm) ∈ Xm by

V̂arm(x1, . . . ,xm) := 2
(m− 2d)!

m!

(m− 2d)!

(m− 4d+ 2)!

[
d∏
j=1

ê1(j)(x1, . . . ,xm)

+ (d− 1)2
d∏
j=1

ê0(j)(x1, . . . ,xm)2

+ 2(d− 1)
d∏
j=1

ê2(j)(x1, . . . ,xm)

+
d∑
j=1

ê1(j)(x1, . . . ,xm)
∏
r 6=j

ê0(r)(x1, . . . ,xm)2

− 2

d∑
j=1

ê1(j)(x1, . . . ,xm)
∏
r 6=j

ê2(r)(x1, . . . ,xm)

− 2(d− 1)

d∑
j=1

ê2(j)(x1, . . . ,xm)
∏
r 6=j

ê0(r)(x1, . . . ,xm)2

+
∑
j 6=l

ê2(j)(x1, . . . ,xm)ê2(l)(x1, . . . ,xm)
∏
r 6=j,l

ê0(r)(x1, . . . ,xm)2

]
.

(4.21)

Finally we can define the estimator α̂m : Xm → R of αm for all (x1, . . . ,xm) ∈ Xm by

α̂m(x1, . . . ,xm) :=
Êxpm(x1, . . . ,xm)2

V̂arm(x1, . . . ,xm)
(4.22)

and the estimator β̂m : Xm → R of βm for all (x1, . . . ,xm) ∈ Xm by

β̂m(x1, . . . ,xm) :=
mV̂arm(x1, . . . ,xm)

Êxpm(x1, . . . ,xm)
. (4.23)

Using these estimators we can define the following hypothesis test.

Definition 4.13 (gamma approximation based test for dHSIC)
Assume Setting 3.1, assume α ∈ (0, 1) and for all m ∈ N let Fm : Xm × R → [0, 1] be
the functions satisfying for all (x1, . . . ,xm) ∈ Xm that Fm(x1, . . . ,xm) is the distribution
function associated to the Gamma(α̂m(x1, . . . ,xm), β̂m(x1, . . . ,xm))-distribution, where
α̂m and β̂m are defined as in (4.22), (4.23) respectively. Then the hypothesis test ϕ =
(ϕm)m∈N satisfying for all m ∈ {1, . . . , 2d − 1} that ϕm := 0 and for all m ∈ {2d, 2d +
1, . . . } and for all (x1, . . . ,xm) ∈ Xm that

ϕm(x1, . . . ,xm) := 1{
m·d̂HSICm(x1,...,xm)>Fm(x1,...,xm)−1(1−α)

}
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is called gamma approximation based α-test for dHSIC.

To illustrate that the gamma approximation based α-test for dHSIC ϕ = (ϕm)m∈N is a
good choice assume the approximation (4.19) is exact with α̂m replacing αm and with β̂m
replacing βm (which is not true), then it would hold that

E1(ϕm) = sup
X∼PX∈H0

P (ϕm(X1, . . . ,Xm) = 1)

= sup
X∼PX∈H0

P
(
m · d̂HSICm(X1, . . . ,Xm) > F−1

m (X1, . . . ,Xm)(1− α)
)

= 1− inf
X∼PX∈H0

P
(
m · d̂HSICm(X1, . . . ,Xm) ≤ F−1

m (X1, . . . ,Xm)(1− α)
)

= 1− (1− α) = α

Of course, since (4.19) is only a heuristic we have no guarantee that the gamma approxi-
mation test actually has exact level.

4.4 Eigenvalue approach

In this section we show a method that aims at approximating the null distribution(
2d

2

) ∞∑
i=1

λiZ
2
i

by estimating the eigenvalues λi based on the data. For this to be a sensible approach
we have to find a way to estimate the eigenvalues of integral operators in such a way
that the distribution calculated from the estimated eigenvalues converges to the desired
distribution in the large sample limit.

4.4.1 General setting

We begin by formalizing the required integral operators.

Definition 4.14 (Tk-operator)
Let X be a metric space and k a continuous, bounded, positive definite kernel on X . Then
for every µ ∈ P(X ) let Tk(µ) : L2(µ, |·|R)→ L2(µ, |·|R) be the functions with the property
that for every f ∈ L2(µ, |·|R) it holds that

(Tk(µ))(f) =

∫
X
k(x, ·)f(x)µ(dx).

The Bochner integral is well-defined, since the function x 7→ k(x, ·)f(x) is in L1(µ, ‖·‖H).

The following theorem connects the eigenvalues of the integral operator Tk(µ) with the
eigenvalues of the covariance operator. It is due to Blanchard et al. (2007, Theorem 4.1).
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Theorem 4.15 (eigenvalue correspondence)
Let (Ω,F ,P) be a probability space, X a metric space and k a continuous, bounded, positive
definite kernel on X . Then, for every random variable X : Ω → X with law PX it holds
that

σp
(
Tk(PX )

)
= σp (CovOp(k(X, ·))) ,

where the covariance operator is defined in Definition 2.5, and the eigenvalues have the
same multiplicity.

Proof Observe that by the reproducing property of k, the Cauchy-Schwarz inequality
and the fact that k is bounded, it holds for all f ∈ H that

E
(
|f(X)|2

)
= E

(
|〈f, k(X, ·)〉H|

2
)

≤ E
(
‖f‖2H‖k(X, ·)‖2H

)
= ‖f‖2HE (k(X,X))

≤ C‖f‖2H

for some constant C > 0. Therefore we have shown that the function A : H → L2(PX , |·|R)
with the property that for all f ∈ H it holds that Af = f is a well-defined, bounded,
linear operator. Therefore its adjoint A∗ : L2(PX , |·|R) → H exists and satisfies for all
f ∈ L2(PX , |·|R) and all g ∈ H that

〈A∗f, g〉H = 〈f,Ag〉L2(PX ,|·|R). (4.24)

Next, observe that by the reproducing property for all f ∈ L2(PX , |·|R) and all g ∈ H it
holds that

〈f,Ag〉L2(PX ,|·|R) = E (f(X)g(X))

= E
(
f(X)

〈
g, k(X, ·)

〉
H

)
= E

(〈
g, f(X)k(X, ·)

〉
H

)
=
〈
g,E (f(X)k(X, ·))

〉
H
,

where in the last step we use a property of the Bochner integral and that k is bounded
and f ∈ L2(PX , |·|R) ensuring the existence of the integral. Together with (4.24) this
implies that

A∗f = E (f(X)k(X, ·)) . (4.25)

This immediately implies that AA∗ = Tk(PX ) and since for all f, g ∈ H it holds that

〈f,A∗Ag〉H = 〈Af,Ag〉L2(PX ,|·|R) = E (f(X)g(X)) = E (〈f, k(X, ·)〉H〈g, k(X, ·)〉H)

the uniqueness property of the covariance operator implies A∗A = CovOp(k(X, ·)). De-
note by

Eλ(B) = {x | Bx = λx}
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the eigenspace of an operator B associated to the eigenvalue λ. Next assume 0 < λ ∈
σp(Tk(PX )) and let f be an associated eigenfunction. Then it holds that

CovOp(k(X, ·))A∗f = A∗AA∗f = A∗Tk(PX ) = λA∗f.

This implies that
A∗Eλ(Tk(PX )) ⊆ Eλ(CovOp(k(X, ·))). (4.26)

In particular this means that λ is an eigenvalue of CovOp(k(X, ·)). Thus we can apply
the same argument to CovOp(k(X, ·)) which leads to

AEλ (CovOp(k(X, ·))) ⊆ Eλ
(
Tk(PX )

)
. (4.27)

Now, since λ > 0 applying A to both sides of the inclusion in (4.26) results in

AA∗Eλ
(
Tk(PX )

)
= Tk(PX )Eλ

(
Tk(PX )

)
= Eλ

(
Tk(PX )

)
⊆ AEλ (CovOp(k(X, ·))) .

(4.28)
Finally, combining (4.27) and (4.28) gives us

AEλ (CovOp(k(X, ·))) = Eλ
(
Tk(PX )

)
.

This implies that multiplicities coincide, which completes the proof of Theorem 4.15. �

Next, we define for all z ∈ H the function Cz ∈ L1(H) by

Cz = z ⊗ z.

Furthermore, for an H-valued random variable Z and a sequence of independent copies
(Zi)i∈N of Z define

C := E (Z ⊗ Z) = E (CZ)

Ĉm :=
1

m

m∑
i=1

Zi ⊗ Zi =
1

m

m∑
i=1

CZi .
(4.29)

The next theorem shows that Ĉm is a consistent estimator of C.
Theorem 4.16 (consistency of the empirical covariance operator)
Let H be a separable Hilbert space, Z an H-valued random variable with finite second
moment and (Zi)i∈N a sequence of independent copies of Z. Then it holds that

‖Ĉm − C‖1
P−a.s.−→ 0

as m→∞, where Ĉm and C are defined as in (4.29).

Proof For all i ∈ N set Yi = CZi − E (CZ). Then we get

Ĉm − C =
1

m

m∑
i=1

CZi − E (CZ)

=
1

m

m∑
i=1

Yi. (4.30)

Next observe that the sequence (Yi)i∈N satisfies the following conditions
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(i) (Yi)i∈N is a sequence of random variables with values in L1(H),

(ii) for all i ∈ N it holds that E (Yi) = 0, and

(iii) (Yi)i∈N are independent and identically distributed.

Since H is a separable Hilbert space it holds that L1(H) is a separable Banach space (see
Theorem 2.2). Therefore we can apply the extension of the strong law of large numbers
given in Theorem B.6 to get that ∥∥∥∥ 1

m

m∑
i=1

Yi

∥∥∥∥
1

P−a.s.−→ 0, (4.31)

as m→∞. Hence combining (4.30) with (4.31) completes the proof of Theorem 4.16. �

4.4.2 Application to dHSIC

Throughout this section we assume Setting 3.1. Recall that by Theorem 4.3 the asymp-
totic distribution of m · d̂HSICm under H0 is given by

m · d̂HSICm
d−→
(

2d

2

) ∞∑
i=1

λiZ
2
i

where (Zi)i∈N is an iid sequence of standard normal random variables and (λi)i∈N are the
eigenvalues of the operator Th2(PX).

Now consider the empirical distribution based on the observations X1, . . . ,Xm which is
given by

P̂m =
1

m

m∑
i=1

δXi , (4.32)

where δx is the Dirac measure at the point x. For f ∈ H it holds that

(Th2(P̂m))(f) =

∫
X
h2(x, ·)f(x) P̂m(dx)

=
1

m

m∑
i=1

h2(Xi, ·)f(Xi).

The idea is to calculate the eigenvalues {νm,1, . . . , νm,m} of the Gram matrix H2 of the
kernel h2 given the observations X1, . . . ,Xm, then it follows that

σp

(
Th2(P̂m)

)
=
{

0,
νm,1
m

, . . . ,
νm,m
m

}
.

For the following analysis, we assume that h2 is positive semi-definite. In the case d = 2
this can be shown relatively easy, while in the general case a proof of this is not so clear.
Assume {νm,1, . . . , νm,m} are sorted in descending order, then set

λ̂m,i =

{
νm,i
m for all i ∈ {1, . . . ,m}

0 for all i ∈ {m+ 1, . . . }.
(4.33)
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The following theorem shows that using these empirical eigenvalues leads to a consistent
estimate of the null distribution. The proof follows Gretton et al. (2009, Theorem 1).

Theorem 4.17 (consistency of empirical eigenvalues)
Assume Setting 3.1. Let (Zi)i∈N be a sequence of iid standard normal random variables,
let (λi)i∈N and (λ̂m,i)i∈N be the non-decreasing sequences of eigenvalues of the operators
Th2(PX) and Th2(P̂m), respectively. Then it holds that

∞∑
i=1

λ̂m,iZ
2
i

d−→
∞∑
i=1

λiZ
2
i

as m→∞.

Proof Using Kolmogorov’s extension theorem (e.g. Klenke, 2014, Theorem 14.36) there
exists a probability space (Ω′,F ′,P′) and independent random variables (Zi)i∈N, (X′i)i∈N
and X′ satisfying that

(i) for all i ∈ N it holds that Zi : Ω′ → R is a standard normal random variable,

(ii) for all i ∈ N it holds that X′i : Ω′ → X has the same distribution as X and

(iii) X′ : Ω′ → X has the distribution as X.

This immediately implies that PX = P′X′ and therefore the eigenvalues of Th2(P′X′) are
also (λi)i∈N. Similarly, if we denote by (λ̂′m,i)i∈N the eigenvalues of Th2(P̂′m), where P̂′m
is the empirical distribution corresponding to X′1, . . . ,X

′
m, then (λ̂′m,i)i∈N have the same

distribution as (λ̂m,i)i∈N. It is therefore sufficient to show the result for (λ̂′m,i)i∈N.

Next, it holds that

CovOp(h2(X′, ·)) = E
(
h2(X′, ·)⊗ h2(X′, ·)

)
=: C

and for a random variable X̂′ with distribution P̂′m it holds that

CovOp(h2(X̂′, ·)) = E
(
h2(X̂′, ·)⊗ h2(X̂′, ·)

)
=

1

m

m∑
i=1

h2(X′i, ·)⊗ h2(X′i, ·) =: Ĉm,

where Ĉm is defined as in (4.29). Then, applying Theorem 4.15 proves that (λi)i∈N and
(λ̂′m,i)i∈N are also the eigenvalues of C and Ĉm respectively. By Lemma 2.7 it also holds
that both C and Ĉm are non-negative nuclear operators and therefore it in particular holds
that

‖C‖1 = trace(C) =
∞∑
i=1

λi <∞ (4.34)

and P′-a.s. that

‖Ĉm‖1 = trace(Ĉm) =
∞∑
i=1

λ̂′m,i <∞. (4.35)
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So by (4.34) and since Zi have finite moments it holds that
∞∑
i=1

E
(
λiZ

2
i

)
=

∞∑
i=1

λi <∞ and
∞∑
i=1

Var
(
λiZ

2
i

)
=

∞∑
i=1

λ2
i <∞.

Hence, we can apply Kolmogorov’s three series theorem (e.g. Klenke, 2014, Theorem
15.50) to get that

∞∑
i=1

λiZ
2
i <∞ P′-a.s.

which together with (4.35) implies
∞∑
i=1

λ̂′m,iZ
2
i −

∞∑
i=1

λiZ
2
i =

∞∑
i=1

(
λ̂′m,i − λi

)
Z2
i P′-a.s..

Therefore it only remains to prove that
∞∑
i=1

(
λ̂′m,i − λi

)
Z2
i
P′-a.s.−→ 0 (4.36)

as m→∞. To this end observe that P′-a.s. it holds that∣∣∣∣ ∞∑
i=1

(
λ̂′m,i − λi

)
Z2
i

∣∣∣∣
≤
∣∣∣∣ ∞∑
i=1

(
(λ̂′m,i)

1
2 − λ

1
2
i

)
(λ̂′m,i)

1
2Z2

i

∣∣∣∣+

∣∣∣∣ ∞∑
i=1

(
(λ̂′m,i)

1
2 − λ

1
2
i

)
λ

1
2
i Z

2
i

∣∣∣∣
≤

[ ∞∑
i=1

λ̂′m,iZ
4
i

]1
2
[ ∞∑
i=1

∣∣∣(λ̂′m,i)1
2 − λ

1
2
i

∣∣∣2]
1
2

+

[ ∞∑
i=1

λiZ
4
i

]1
2
[ ∞∑
i=1

∣∣∣(λ̂′m,i)1
2 − λ

1
2
i

∣∣∣2]
1
2

(4.37)

where in the last step we used Hölder’s inequality. Next, we show that this expression
converges to 0 P′-a.s.. By Markov’s inequality we have that

P′
(∣∣∣∣ ∞∑

i=1

λiZ
4
i

∣∣∣∣ > k

)
≤ 1

k
E

(∣∣∣∣ ∞∑
i=1

λiZ
4
i

∣∣∣∣
)
≤ C1

k
(4.38)

and by using independence of λ̂′m,i and Zi and again Markov’s inequality we have that

P′
(∣∣∣∣ ∞∑

i=1

λ̂′m,iZ
4
i

∣∣∣∣ > k

)
≤ 1

k
E

(∣∣∣∣ ∞∑
i=1

λ̂′m,iZ
4
i

∣∣∣∣
)
≤ 1

k

∞∑
i=1

E
(
|λ̂′m,i|

)
E
(
|Zi|4

)
≤ C2

k
(4.39)

where C1, C2 > 0 are two constants. Furthermore, it holds P′-a.s. that
∞∑
i=1

(
(λ̂′m,i)

1
2 − λ

1
2
i

)2

≤
∞∑
i=1

|(λ̂′m,i)
1
2 − λ

1
2
i ||(λ̂

′
m,i)

1
2 + λ

1
2
i | =

∞∑
i=1

|λ̂′m,i − λi|. (4.40)
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Now, since both C and Ĉm are nuclear operators it follows that (λ̂′m,i − λi)i∈N are the
eigenvalues of the operator Ĉm−C, which together with (4.40) and Theorem 4.16 implies
that

∞∑
i=1

(
(λ̂′m,i)

1
2 − λ

1
2
i

)2

≤
∞∑
i=1

|λ̂′m,i − λi| = ‖Ĉm − C‖1
P′-a.s.−→ 0 (4.41)

as m → ∞. Finally, combining (4.37) with (4.38), (4.39) and (4.41) shows that for all
k ∈ N we have

∣∣∣∣ ∞∑
i=1

(
λ̂′m,i − λi

)
Z2
i

∣∣∣∣ ≤ 2
√
k

[ ∞∑
i=1

∣∣∣(λ̂′m,i)1
2 − λ

1
2
i

∣∣∣2]
1
2
P′-a.s.−→ 0

as m → ∞ with probability at least (1 − 1
k max{C1, C2}). Therefore letting k tend to

infinity completes the proof of Theorem 4.17. �

4.4.3 Constructing a hypothesis test

In order to construct a hypothesis we need to calculate the values λ̂m,i from the observa-
tions. Using (4.33) we get that

λ̂m,i =
νm,i
m

1{i∈{1,...,m}},

where νm,1, . . . , νm,m are the m eigenvalues of the Gram matrix H2 of the kernel h2 given
observations x1, . . . ,xm. Unfortunately, the explicit expansion of h2 under H0 given in
Lemma C.2 contains the terms

(i) e0(j) := E
(
kj(Xj

1 , X
j
2)
)
,

(ii) e1(j)(·) := E
(
kj(·, Xj

1)
)
,

where j ∈ {1, . . . , d}, which cannot be calculated from the observational data alone.

We hence need an extra approximation step. The U-statistic of (i) and (ii) are given for
all (x1, . . . ,xm) ∈ Xm by

(i) ê0(j)(x1, . . . ,xm) := 1
m(m−1)

∑m
i1 6=i2 k

j(xji1 , x
j
i2

),

(ii) ê1(j)(x1, . . . ,xm)(·) := 1
m

∑m
i=1 k

j(·, xji ).

Based on these estimators we can define the estimator Ĥ2 : Xm → Rm×m for all
(x1, . . . ,xm) ∈ Xm by replacing

e0(j) by ê0(j)(x1, . . . ,xm) and e1(j)(·) by ê1(j)(x1, . . . ,xm)(·)

in the expansion of H2 given in Lemma C.2. Moreover, for all i ∈ {1, . . . ,m} we define an
estimator ν̂m,i : Xm → R of νm,i for all (x1, . . . ,xm) ∈ Xm by letting ν̂m,i(x1, . . . ,xm) be



CHAPTER 4. HYPOTHESIS TESTS BASED ON dHSIC 85

the i-th largest eigenvalue of Ĥ2(x1, . . . ,xm). Finally, the distribution of the test statistic
under H0 can be approximated by the distribution(

2d

2

) ∞∑
i=1

ν̂m,i(x1, . . . ,xm)

m
Z2
i . (4.42)

Using this distribution we can construct the following hypothesis test.

Definition 4.18 (eigenvalue based test for dHSIC)
Assume Setting 3.1, let α ∈ (0, 1) and for all m ∈ N let F̂m : Xm × R → [0, 1] be the
function satisfying for all (x1, . . . ,xm) ∈ Xm that F̂m(x1, . . . ,xm) is the distribution func-
tion corresponding to the distribution of (4.42). Then the hypothesis test ϕ = (ϕm)m∈N
satisfying for all m ∈ {1, . . . , 2d− 1} that ϕm := 0 and for all m ∈ {2d, 2d + 1, . . . } and
for all (x1, . . . ,xm) ∈ Xm that

ϕm(x1, . . . ,xm) := 1{m·d̂HSICm(x1,...,xm)>F̂−1
m (x1,...,xm)(1−α)}

is called the eigenvalue based α-test for dHSIC.

Together with the tools described in the previous sections we can show that the first step
in the approximation is consistent in the following sense.

Lemma 4.19 (Type I and Type II error for first approximation step)
Assume Setting 3.1, let H0 and HA be defined as in (4.1) and (4.2), respectively, let
α ∈ (0, 1) and let Fm be the distribution function of

(
2d
2

)∑∞
j=1 λ̂m,jZ

2
j , with λ̂m,j defined

as in (4.33). If X1,X2, . . .
iid∼ PX ∈ H0 it holds that

lim sup
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) > F−1

m (1− α)
)

= α

and if X1,X2, . . .
iid∼ PX ∈ HA it holds that

lim sup
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) ≤ F−1

m (1− α)
)

= 0.

Proof Theorem 4.17 implies for all t ∈ R that

lim
m→∞

Fm(t) = lim
m→∞

P′
((

2d

2

) ∞∑
i=1

λ̂′m,iZ
2
i ≤ t

)
= P′

((
2d

2

) ∞∑
i=1

λiZ
2
i ≤ t

)
=: F (t).

Since F is continuous everywhere it is well-known (see Theorem B.1) that for all x ∈ (0, 1)
it holds that

lim
m→∞

F−1
m (x) = F−1(t). (4.43)

Now, let X1,X2, . . .
iid∼ PX ∈ H0. Using Theorem 4.3 (and assuming that ξ2(h) > 0 see

remark below the theorem) it holds

m · d̂HSICm(X1, . . . ,Xm)
d−→
(

2d

2

) ∞∑
j=1

λjZ
2
j (4.44)
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as m→∞. Finally, combining Corollary B.3 with (4.43) and (4.44) it holds that

lim sup
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) > F−1

m (1− α)
)

= 1− lim inf
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) ≤ F−1

m (1− α)
)

= 1− F (F−1(1− α))

= α.

This shows that ϕ has pointwise asymptotic level α.

Now, let X1,X2, . . .
iid∼ PX ∈ HA. Using that a convergent sequence is bounded (4.43)

implies that there exists a t∗ ∈ R such that

sup
m∈N

F−1
m (1− α) ≤ t∗. (4.45)

Hence, (4.45) together with Corollary 4.2 shows that

lim sup
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) ≤ F−1

m (1− α)
)

≤ lim sup
m→∞

P
(
m · d̂HSICm(X1, . . . ,Xm) ≤ t∗

)
= 0.

This proves that ϕ is pointwise consistent and therefore completes the proof of Theorem
4.20. �

In order to show that the second approximation step does not affect the Type I and
Type II errors, one needs to show that the distribution function F̂m(X1, . . . ,Xm) from
Definition 4.18 is a good approximation of Fm from Lemma 4.19. Then we could prove
the following desirable result.

Conjecture 4.20 (level and consistency of the eigenvalue based test for dHSIC)
Assume Setting 3.1, let H0 and HA be defined as in (4.1) and (4.2), respectively, let
α ∈ (0, 1) and let ϕ = (ϕm)m∈N be the eigenvalue based α-test for dHSIC. Then, ϕ is
a pointwise consistent hypothesis test with pointwise asymptotic level α for testing H0

against HA.

4.5 Implementation details

In the previous sections, we introduced

(i) the permutation test for dHSIC (Definition 4.4),

(ii) the bootstrap test for dHSIC (Definition 4.6),

(iii) the gamma approximation based test for dHSIC (Definition 4.13) and
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(iv) the eigenvalue based test for dHSIC (Definition 4.18).

The definitions are quite abstract, as they are tailored for a theoretical analysis. This sec-
tion aims at giving additional details on how to implement these abstractly defined hypoth-
esis tests on a more practical level. The details on how to compute d̂HSICm(x1, . . . ,xm)
for all (x1, . . . ,xm) ∈ Xm efficiently are discussed in Section 3.4 and are omitted here.

4.5.1 Permutation/Bootstrap

Fix α ∈ (0, 1) and assume we observe (X1, . . . ,Xm) = (x1, . . . ,xm). In order to apply
the permutation test for dHSIC or the bootstrap test for dHSIC, one has to calculate the
quantile (

R̂m(x1, . . . ,xm)
)−1

(1− α). (4.46)

From the definition of R̂m it is clear that this involves (m!)d evaluations of d̂HSIC for the
permutation test and mmp evaluations of d̂HSIC for the bootstrap test. In both settings
this becomes computationally impossible rather fast as m grows. Instead of computing
R̂m explicitly one can use the Monte-Carlo approximation defined in Definition 2.60.
Essentially this involves calculating the p-value given by

p̂m(x1, . . . ,xm) :=
1 +

∣∣{i ∈ {1, . . . , B} : Tm(gm,ψi(x1, . . . ,xm)) ≥ Tm(x1, . . . ,xm)}
∣∣

1 +B
,

where (ψi)i∈N is a sequence drawn from the uniform distribution on Am (i.e. on (Sm)d

for the permutation test and on Bd
m for the bootstrap test). The test then rejects the null

hypothesis whenever p̂m(x1, . . . ,xm) ≤ α. The corresponding critical value is calculated
according to Proposition 2.64. For further details see Section 2.4.2

For practical applications one generally fixes the value of B. Davison and Hinkley (1997)
suggest to use a value of B between 99 and 999.

In the following two section we give some additional details specific to the permutation
test and the bootstrap test.

Permutation test

As shown in the proof of Proposition 4.5 the resampling method g for the permutation
test is a resampling group which satisfies the invariance condition (4.9). This allows us to
apply Proposition 2.63 to see that the Monte-Carlo approximated permutation test has
valid level, given that we have continuous random variables as input.

Algorithm 2 shows how to implement the p-value and the critical value for the Monte-
Carlo approximated permutation test.
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Bootstrap test

We showed that the bootstrap test for dHSIC has pointwise asymptotic level and is
pointwise consistent. Both of these properties are preserved if we use the Monte-Carlo
approximation and let B tend to infinity.

Algorithm 2 shows how to implement the p-value and the critical value for the Monte-
Carlo approximated bootstrap test.

Algorithm 2 computing p-value and critical value for the permutation/bootstrap test

1: procedure MonteCarlo-pvalue(x1, . . .xm, B)
2: initialize empty B-dimensional vector T
3: for k = 1 : B do
4: initialize d-dimensional vectors x̃1, . . . , x̃m
5: for j = 1 : d do
6: ψ ← random element from Sm (permutation) or {1, . . . ,m}m (bootstrap)
7: for i = 1 : m do
8: x̃i[j]← xψ(i)[j]

9: T[k]← dHSIC(x̃1, . . . , x̃m)

10: tmp← # {k ∈ {1, . . . , B} |T[k] ≥ dHSIC(x1, . . .xm))}
11: pval← (tmp + 1)/(B + 1)
12: return pval

13: procedure MonteCarlo-critval(x1, . . .xm, B, α)
14: initialize empty B-dimensional vector T
15: for k = 1 : B do
16: initialize d-dimensional vectors x̃1, . . . , x̃m
17: for j = 1 : d do
18: ψ ← random element from Sm (permutation) or {1, . . . ,m}m (bootstrap)
19: for i = 1 : m do
20: x̃i[j]← xψ(i)[j]

21: T[k]← m · dHSIC(x̃1, . . . , x̃m)

22: tmp← # {k ∈ {1, . . . , B} |T[k] = dHSIC(x1, . . .xm))}
23: ind← d(B + 1) · (1− α)e+ tmp
24: if ind ≤ B then
25: S← sort(T) (in ascending order)
26: critval← S[ind]
27: else
28: critval←∞
29: return critval
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4.5.2 Gamma approximation

Fix α ∈ (0, 1) and assume we observe (X1, . . . ,Xm) = (x1, . . . ,xm). Implementing the
gamma approximation based α-test for dHSIC is essentially a 4 step process, where we
use the notation from Section 4.3:

1) for all j ∈ {1, . . . , d} implement the estimators ê0(j), . . . , ê3(j),

2) based on (4.20) and (4.21) compute the estimates Êxpm(x1, . . . ,xm) and V̂arm(x1, . . . ,xm),

3) using (4.22) and (4.23) compute the estimates α̂m(x1, . . . ,xm) and β̂m(x1, . . . ,xm)
and

4) compute the 1−α quantile of the Gamma(α̂m(x1, . . . ,xm), β̂m(x1, . . . ,xm))-distribution.

The hypothesis test rejects H0 if m · d̂HSICm(x1, . . . ,xm) is greater than the threshold
given by the 1− α quantile of the Gamma(α̂m(x1, . . . ,xm), β̂m(x1, . . . ,xm))-distribution
calculated in step 4).

4.5.3 Eigenvalue approach

Fix α ∈ (0, 1) and assume we observe (X1, . . . ,Xm) = (x1, . . . ,xm). Implementing the
eigenvalue approach based α-test for dHSIC can be broken down into the following steps,
where we use the notation of Section 4.4.3:

1) for all j ∈ {1, . . . , d} implement the estimators ê0(j) and ê1(j),

2) based on Lemma C.2 compute the estimates â1(x1, . . . ,xm), . . . , â10(x1, . . . ,xm) by
replacing the expectations by the corresponding estimator ê0(j) and ê1(j) implemented
in step 1),

3) also based on Lemma C.2 compute the estimate

Ĥ2(x1, . . . ,xm) =

(
2d

2

)−1 10∑
i=1

âi(x1, . . . ,xm),

4) compute the estimates ν̂m,1(x1, . . . ,xm), . . . , ν̂m,m(x1, . . . ,xm) by computing the eigen-
values of the matrix Ĥ2(x1, . . . ,xm),

5) use a Monte-Carlo approach to approximate (1− α)-quantile of the distribution

m∑
i=1

ν̂m,1(x1, . . . ,xm)

m
Zi,

where (Zi)i∈N are standard normal random variables.

The hypothesis test rejects H0 if m · d̂HSICm(x1, . . . ,xm) is greater than then the (1−α)-
quantile computed in the last step.



Chapter 5

Simulations

In this section we perform some basic simulations to verify the properties of the four
hypothesis tests derived in the previous section. We separate the simulations into three
parts; level analysis, power analysis and runtime analysis.

5.1 Competing method

For comparison purposes we use a multiple testing version of the two variable HSIC
test. The idea is that if we can group several variables together, we can test the newly
constructed multivariate variable against a different variable using the two variable HSIC.
Grouping is for example possible if the variables are vectors, in which case we can simply
bind them together to a matrix. In order to test for joint independence we use the
following testing sequence,

1. use HSIC to test whether Xd is independent of [X1, . . . , Xd−1],

2. use HSIC to test whether Xd−1 is independent of [X1, . . . , Xd−2],

. . .

d-1. use HSIC to test whether X2 is independent of X1.

Finally, we account for the increased family-wise error rate using the Bonferroni correction,
i.e. we perform all tests at level α

d−1 and reject the null hypothesis if any of the individual
tests reject the null hypothesis. In the following sections we refer to this test simply as
HSIC.

This method is of course not restricted to HSIC but can be performed for any two variable
independence test.

5.2 Level analysis

In Chapter 4 we proved the following results related to the significance level of the hy-
pothesis tests:

90
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(i) the permutation test has valid level (even the Monte-Carlo approximated test),

(ii) the bootstrap test has pointwise asymptotic level,

(iii) the gamma approximation based test has no guarantee for level, and

(iv) the eigenvalue approximation based test has pointwise asymptotic level.

We verify these results numerically by considering two examples of fixed elements PX ∈ H0.
In both examples we simulate n = 1000 realizations of X1, . . . ,Xm

iid∼ PX for different
sample sizes m and check how often each of the four hypothesis tests rejects the null
hypothesis.

Simulation 1 (testing level)

Consider X1, X2, X3 iid∼ N (0, 1), then for X = (X1, X2, X3) it holds that

PX = PX
1 ⊗ PX2 ⊗ PX3 ∈ H0,

where H0 is the null hypothesis defined in (4.1). Set α = 0.05, B = 25, and m ∈
{100, 200, . . . , 1000}. The rejection rates for the corresponding four hypothesis tests
(permutation, bootstrap, gamma approximation and eigenvalue) based on n = 1000
repeated draws of X are plotted in Figure 5.1.
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Figure 5.1: Simulation 1 (testing level): Rejection rates (based on n=1000 repetitions)
for each of the four different hypothesis tests based on dHSIC. The test has valid level if
the rejection rate lies below the dotted red line at 0.05.

Simulation 2 (testing level)

Consider X1 ∼ N (0, 1) and X2 ∼ Bin(20, 0.2) with X1 and X2 independent. Then
for X = (X1, X2) it holds that

PX = PX
1 ⊗ PX2 ∈ H0,

where H0 is the null hypothesis defined in (4.1). Set α = 0.05, B = 25, and m ∈
{100, 200, . . . , 1000}. The rejection rates for the corresponding four hypothesis tests
(permutation, bootstrap, gamma approximation and eigenvalue) based on n = 1000
repeated draws of X are plotted in Figure 5.2.
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Figure 5.2: Simulation 2 (testing level): Rejection rates (based on n=1000 repetitions)
for each of the four different hypothesis tests based on dHSIC. The test has valid level if
the rejection rate lies below the dotted red line at 0.05.

In both simulations we get similar results. We collect the most important observations.

(i) The permutation test is the only test that achieves level α. This corresponds to what
has been proved in the previous section. As mentioned above, this result is rather
surprising as it is does not depend on the choice of B, which in these examples is
very small (B = 25).

(ii) The gamma approximation based test, at least in these two examples, has level close
to α. It however also shows that one has to be very careful, when analyzing results
based on this test, since it often exceeds the required level.

(iii) It has been proved in the previous section that both the bootstrap test and the
eigenvalue test have pointwise asymptotic level. In both examples this convergence
cannot be observed for sample sizes between 100 and 1000. This shows that the
theoretically nice result of pointwise asymptotic level is rather weak in practical
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applications.

(iv) The bootstrap test appears to achieve level α in most cases. This is due to the
conservative choice of the p-value in the Monte-Carlo approximation of the bootstrap
test.

5.3 Power analysis

Assessing the power of a test can be done for many different alternatives. Here, we show
a single simulation setting that compares the four hypothesis tests based on dHSIC.

Simulation 3 (comparing power)

Consider N1, N2, N3 ∼ N (0, 1) and let PX be generated by the SEM,

X1 = N1

X2 = λ cos(X1) +N2

X3 = λ cos(X1) + λ cos(X2) +N3.

Then for λ = 0 it holds that PX ∈ H0 and for λ ∈ (0, 1] it holds that PX ∈ H0,
where H0 and HA are defined in (4.1) and (4.2). For α = 0.05 and B = 100, the
rejection rates for the corresponding four hypothesis tests (permutation, bootstrap,
gamma approximation and eigenvalue) and the multiple testing approach using HSIC
(with the permutation test) based on n = 1000 repeated draws of X are plotted in
Figure 5.3 for different values of λ.

Although it appears like the dHSIC test has more power than the multiple testing ap-
proach with HSIC, this depends strongly on the dependence under considerations. For
some dependencies dHSIC is more powerful and for other dependencies the multiple test-
ing approach with HSIC is more powerful.



CHAPTER 5. SIMULATIONS 95

* * *
*

*

*

*

*

*

*

*

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

re
je
ct
io
n
ra
te

+ +
+

+

+

+

+

+

+

+
+

+ +
+

+

+

+

+

+

+

+
+

+ +
+

+

+

+

+

+

+

+
+

+ +
+

+

+

+

+

+

+

+
+

*
+
+
+
+

HSIC - permutation
dHSIC - permutation
dHSIC - bootstrap
dHSIC - gamma
dHSIC - eigenvalue

Figure 5.3: Simulation 3 (comparing power): Rejection rates (based on n=1000 repeti-
tions) for each of the four different hypothesis tests based on dHSIC and the competing
method based on HSIC. Larger values of λ correspond to stronger dependencies between
the variables.

5.4 Runtime analysis

Finally, we want to compare the runtime of the dHSIC test with the runtime of the
multiple testing approach for HSIC.

The computational complexity for the dHSIC test statistic is

O
(
dm2

)
as can be seen from the considerations in Section 3.4. The multiple testing approach for
HSIC computes HSIC d − 1-times, which appears to result in the same computational
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complexity. However, since the dimension of the input variables for the HSIC tests are
also dependent on d (at least in common settings such as for the Gaussian kernel) due
to the process of binding variables together, we in fact end up with a true computational
complexity of

O
(
d2m2

)
.

We numerically test these computational complexities by two simulations. In the first
simulation we fix m and let d vary and in the second simulation we fix d and let m very.
The results are presented in Figure 5.4 and in Figure 5.5.
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Figure 5.4: runtime analysis with varying variable number and fixed sample size (m =
100)
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Figure 5.5: runtime analysis with varying sample size and fixed variable number (d = 10)



Chapter 6

Applications to causal inference

Many methods in causal inference rely on independence testing. In this section we il-
lustrate one such application by applying the d-variable Hilbert-Schmidt independence
criterion to causal structure learning in additive noise models.

The following material is divided into three parts. First, we introduce additive noise
models and state some important remarks related to identifiability. We then apply dHSIC
to an simulated data example and conclude the section with a real-world data example.

6.1 Additive noise models

The following introduction to additive noise models is based on Peters et al. (2014). The
reader is expected to be familiar with causal models, in particular directed acyclic graphs
(DAGs), as well as structural equation models (SEMs). A summary of these concepts can
be found in Peters et al. (2014, Section 1).

We consider a d-dimensional random vector X = (X1, . . . , Xd) with joint distribution
PX and assume it is generated by an SEM with structural equations S, noise variables
N = (N1, . . . , Nd) and associated DAG G. An important question in causality is whether
the causal structure, in this case G, can be inferred from the observational distribution
PX alone. In general, this is impossible without additional assumptions on the model
class (see Peters et al., 2014, Proposition 9). For graphical models one option is to
assume that PX is faithful and Markov with respect to the DAG G, then the Markov
equivalence class of G is uniquely determined by PX. This is, for example, the fundamental
assumption behind conditional independence-based methods for causal structure learning.
For functional models restricting the model class can be done by specifying the class of
allowed functions appearing in the structural equations S. There are several restrictions,
under which the graph G becomes identifiable from PX. We want to focus on the class
of functions which are additive with respect to the noise variables N = (N1, . . . , Nd).
The resulting SEMs are called continuous additive noise models (see Peters et al., 2014,
Definition 16).

98
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Definition 6.1 (continuous additive noise model (ANM))
A continuous additive noise model (ANM) is defined as an SEM (S,PN), where S =

(S1, . . . , Sd) is a collection of d equations of the form

Sj : Xj = f j(PAj) +N j , j ∈ {1, . . . , d},

and where N = (N1, . . . , Nd) is jointly independent and with strictly positive density (with
respect to the Lebesgue measure). PAj denotes the parents of the node Xj in the graph
associated to (S,PN).

In general, continuous additive noise models are not identifiable from PX. The classical
counter-example is if the functions are linear and the noise variables are Gaussian dis-
tributed. Models of this type are called linear Gaussian and the next proposition shows
that the causal order of such models can be reversed (see Peters et al., 2014, Proposition
13).

Proposition 6.2 (linear Gaussian model is reversible)
Let X and N be two Gaussian random variables with N ⊥⊥ X, let α 6= 0 and let

Y = αX +N.

Then there exists β ∈ R and a Gaussian random variable Ñ with Ñ ⊥⊥ Y , such that

X = βY + Ñ .

It turns out that the linear Gaussian case is rather special in this respect. If for example
we only allow non-linear functions and Gaussian noise the following theorem shows that
the DAG is uniquely identifiable from PX (see Peters et al., 2014, Corollary 31). Models
of this type are referred to as non-linear Gaussian ANMs.

Theorem 6.3 (non-linear Gaussian model is identifiable)
Let PX be generated by the additive noise model (S,PN) given by

Sj : Xj = f j(PAj) +N j , j ∈ {1, . . . , d},

with normally distributed noise variables N j ∼ N (0, σ2
j ) and three times differentiable

functions f j that are not linear in any component, i.e. if we denote the parents PAj of
Xj by Xk1 , . . . , Xkl , then the function f j(xk1 , . . . , xka−1 , ·, xka+1 , . . . , xkl) is assumed to be
nonlinear for all a and some (xk1 , . . . , xka−1 , xka+1 , . . . , xkl) ∈ Rl−1. Then we can identify
the corresponding DAG from the distribution PX.

A simplification of this setting is given by structural equations of the form

Sj : Xj =
∑

k∈PAj

f j,k(Xk) +N j , j ∈ {1, . . . , d}, (6.1)

with normally distributed noise variables N j ∼ N (0, σ2
j ) and three times differentiable,

nonlinear functions f j,k. Models of this type (non-Gaussian noise included) are called
causal additive models (CAM) (see Bühlmann et al., 2014).
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Assuming we are given a random variable PX generated by a non-linear Gaussian ANM
as in Theorem 6.3, we can write the functions f j in terms of the expectation as

f j = arg min
g additive

E
((
Xj − g

(
PAj

))2)
,

for details see Bühlmann et al. (2014). Theorem 6.3 now ensures that there is exactly one
DAG such that

X1 − f1
(
PA1

)
, . . . , Xd − fd

(
PAd

)
are independent Gaussian distributed random variables. Using a generalized regression
method to estimate f j(paj) and then concentrating on the independence of the residuals,
gives us a method to check whether a given DAG is correct. We make this method explicit
for models of the form (6.1) using generalized additive model regression (GAM) (Wood
and Augustin, 2002).

DAG verification method

Given: observations X1, . . . ,Xm and a candidate DAG G

1) Use generalized additive model regression (GAM) to regress each node Xj on all
its parents PAj and denote the resulting vector of residuals by resj .

2) Perform a d-variable joint independence test (e.g. dHSIC) to test whether
(res1, . . . , resd) is jointly independent.

3) If (res1, . . . , resd) is jointly independent, then the DAG is not rejected.

We can also use this DAG verification method to find the correct DAG by performing
the check for all possible DAGs with the correct number of nodes. In practice, we do
not want to iterate over all possible graphs. A more efficient method, which is based on
a similar idea, is the RESIT (regression with subsequent independence test) algorithm
described in Peters et al. (2014, Section 4.1) and Bühlmann et al. (2014).

6.2 Simulation example

In this subsection, we consider two explicit continuous additive noise models. We then
generate data from one of them and use the model verification method described at the
end of the previous section to check whether we are able to determine the correct model
based only on the data.

We denote the two ANMs by (S1,PN1) and (S2,PN2) and assume they satisfy

S1


X1 = N1

1

X2 = fλ(X1) +N2
1

X3 = fλ(X1) + fλ(X2) +N3
1

and S2


X1 = g(X3) + h(X2) +N1

2

X2 = j(X3) +N2
2

X3 = N3
2

(6.2)
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X1

X2 X3

(a) graph G1

X1

X2 X3

(b) graph G2

Figure 6.1: graphical representation of the two ANMs S1 and S2 from (6.2)

with N j
i ∼ N (0, σji ) independent normally distributed random variables. The correspond-

ing graphs are given in Figure 6.1.

If fλ is linear we are in the linear Gaussian setting and cannot identify the correct graph
due to Proposition 6.2. However, if fλ is non-linear we are in the setting of (6.1) and by
Theorem 6.3 are able to determine the correct graph.

For the following simulation we choose the two functions

fλ(x) := (1− λ)x+ λ cos(x),

and
fλ(x) := (1− λ)x+ λ|x|,

with λ ∈ [0, 1]. The parameter λ should be understood as a quantifier of how non-linear
fλ is. We then simulate 1000 data samples consisting of m = 100 data points from S1

and perform the model verification method for both graphs G1 and G2 to check if they
are accepted or rejected.

The result for different values of λ is plotted in Figure 6.2 (for the cos non-linearity) and
in Figure 6.3 (for the |·| non-linearity). We used the permutation test for dHSIC with
B = 100 as well as a multiple testing version of the classical two variable HSIC test (also
using the permutation test with B = 100) for comparison.

This shows that the power of the test depends on the dependence structure of the variables.
In particular, one cannot say dHSIC has more power than a multiple testing approach
with HSIC or vice versa. The difference becomes more pronounced if we extend the three
variable models S1 and S2 to 5 variables. Two corresponding plots are given in Figure 6.4
and Figure 6.5.
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Figure 6.2: Rejection rates (based on n = 1000 repetitions), where S1 is the correct model
with 3 variables fλ(x) = (1− λ)x+ λ cos(x) and S2 is the corresponding false model.
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Figure 6.3: Rejection rates (based on n = 1000 repetitions), where S1 is the correct model
with 3 variables fλ(x) = (1− λ)x+ λ|x| and S2 is the corresponding false model.
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Figure 6.4: Rejection rates (based on n = 1000 repetitions), where S1 is the correct model
with 5 variables fλ(x) = (1− λ)x+ λ cos(x) and S2 is the corresponding false model.
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Figure 6.5: Rejection rates (based on n = 1000 repetitions), where S1 is the correct model
with 5 variables fλ(x) = (1− λ)x+ λ|x| and S2 is the corresponding false model.
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6.3 Real data example

In this section we want to show that the hypothesis tests we developed can also be
applied to real world data. Consider the following causal inference problem: Given 349
measurements of the variables Altitude, Temperature and Sunshine.1 Can we determine
the correct causal ordering.

For 3 variables there exist a total of 25 possible DAGs. The idea is to iterate over all
these DAGs and use the DAG verification method introduced at the end of Section 6.1
to check whether a DAG fits the data.

We apply the DAG verification method together with the permutation test for dHSIC
(with B = 1000) and the multiple testing approach for HSIC (also with a permutation
test and B = 1000) to every possible DAG and compare the resulting p-values. The result
is shown in Figure 6.6.

5 10 15 20 25

-7
-6

-5
-4

-3

DAG

lo
g(
p-
va
lu
e)

HSIC
dHSIC
5% level

Figure 6.6: Real world data example: log(p-value) for every possible DAG on 3 nodes
after applying the DAG verification method. DAG is rejected at at a significance level of
5% if log(p-value) lies below the blue line.

It shows that the dHSIC based test rejects DAG 25 at a 5%-significance level, while the
1The dataset is taken from Mooij et al. (2016, pair0001.txt and pair0004.txt).
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Altitude

Sunshine Temperature

Figure 6.7: DAG 25

HSIC method does not. This implies that for this particular setting dHSIC has more
power than HSIC.

Even though DAG 25 is rejected at a 5%-significance level by the dHSIC based test it
still appears to be a good fit, because both tests indicate that DAG 25 is the best fit.
The graph of DAG 25 is given in Figure 6.7. This causal structure makes sense from
our physical understanding, as we would expect altitude to effect both sunshine and
temperature. The effect of temperature on sunshine could be explained by intermediate
latent variables such as cloud or fog.

The discrepancy between best fit and rejected model is a common issue that occurs when
working with real data. The reason is that we can almost never expect to have the
“true” physical model, which implies that given more and more data observations we will
eventually reject any model. In the setting of real data it is therefore often beneficial to
ask, which model in a given set of models fits the data best, instead of asking whether a
given model fits the data.



Chapter 7

Summary

We introduced a measure of joint dependence between d-variables, which we called the
d-variable Hilbert-Schmidt independence criterion (dHSIC). This work extends the two-
variable Hilbert-Schmidt independence criterion (HSIC). As in the HSIC case, we were
able to estimate dHSIC empirically using a V-statistic and derive some important prop-
erties of the asymptotic distribution of this estimator. This allowed us to construct four
different hypothesis tests, which all use this empirical estimator as a test statistic; the
permutation test based on dHSIC (Definition 4.4), the bootstrap test based on dHSIC
(Definition 4.6), the gamma approximation based test (Definition 4.13) and the eigenvalue
approach based test (Definition 4.18).

For the permutation test we showed that it achieved level in Proposition 4.5. In particular,
we also showed that this property carries over to the Monte-Carlo approximated version
of the permutation test. This is a very strong property as the Monte-Carlo approximation
based permutation test is computationally feasible even for moderately large sample sizes.
The bootstrap test was defined very similar to the permutation test. The slight differences,
however, allowed us to show that it is connected to the empirical product distribution,
via the bootstrapping property stated in Proposition 4.8. This in turn was the central ele-
ment in proving that it has pointwise asymptotic level (Proposition 4.9) and is consistent
(Proposition 4.10). Using the theory on V-statistics, we were able to compute the mean
and variance of the empirical estimator of dHSIC in Lemma 4.11 and Lemma 4.12. These
were the essential ingredients in constructing the gamma approximation based test for
dHSIC. Although this test has no guarantees on level and consistency, it is computation-
ally very fast and therefore of particular interest for practical applications. Finally, we
constructed the eigenvalue approach based test for dHSIC by estimating the eigenvalues
in the asymptotic distribution of the test statistic directly. Using tools from functional
analysis, we were able to show (up to the last approximation step) that the resulting test
achieves pointwise asymptotic level and is consistent (Conjecture 4.20). It is therefore a
viable alternative to the slower bootstrap test.

We gave implementation details on dHSIC in Section 3.4 and on each of the four hypothesis
tests in Section 4.5. This should enable implementation of the tests in the exact same
why as has been done for this thesis, hence allowing reproduction of all results.
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Finally, we considered various simulations, which showed that the dHSIC based tests
were able to compare with the commonly used multiple testing approach based on HSIC.
The power of both approaches varies depending on the dependence under considerations;
in some cases the dHSIC tests were more powerful, in other cases the multiple testing
approach was more powerful. In terms of runtime, we were, however, able to show that
dHSIC is generally faster and in terms of the number of variables even beats the multiple
testing approach by an order of magnitude of one. Moreover, we also demonstrated that
dHSIC can be successfully applied to causal inference both on simulated and real data.



Appendix A

Functional Analysis

A.1 Important theorems

A.1.1 Mercer’s theorem

The following version of Mercer’s theorem is taken from Ferreira and Menegatto (2009,
Theorem 1.1).

Theorem A.1 (Mercer’s theorem)
Let X be a topological Hausdorff space equipped with a finite Borel measure µ. Then for
every continuous positive definite kernel k : X × X → C there exist a scalar absolutely
summable sequence (λn)n∈N with λ1 ≥ λ2 ≥ · · · ≥ 0 and an orthonormal system (ϕn)n∈N
in L2 (X,µ) consisting of continuous functions only, such that the expansion

k(x, y) =
∞∑
n=1

λnϕn(x)ϕn(y), x, y ∈ supp(µ),

converges uniformly. Furthermore let K ∈ L
(
L2
(
X ,PX

))
be the integral operator with

the property that for every f ∈ L2
(
X ,PX

)
and for every x ∈ X it hols that

(K(f)) (x) =

∫
X
k(x, y)f(y)µ(dy)

Then (λn)n∈N and (ϕn)n∈N are eigenvalues respectively eigenfunctions of K.

A.1.2 McDiarmid inequality

Theorem A.2 (McDiarmid inequality)
Let X1, . . . , Xn be n independent random variables taking values in X and let Z =
f(X1, . . . , Xn) where f is such that for all i ∈ {1, . . . , n} it holds that

sup
x1,...,xn,x′i

|f(x1, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci

108
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then

P(Z − E(Z) ≥ ξ) ≤ exp

(
−2ξ2∑n
i=1 c

2
i

)
and

P(E(Z)− Z ≥ ξ) ≤ exp

(
−2ξ2∑n
i=1 c

2
i

)

A.2 Tensor products of RKHS

Products of kernels are important when considering multidimensional settings. Therefore
we give a very short overview of the most basic facts of tensor products of Hilbert spaces
and how they behave in relation to reproducing kernel Hilbert spaces. Most of this section
follows Berlinet and Thomas-Agnan (2004). More details on tensor product of Hilbert
spaces can also be found in Weidmann (1980).

We begin by defining the tensor product for functions.

Definition A.3 (tensor product for functions)
Let X and Y be two set, let f ∈ F(X ) and let g ∈ F(Y), then the tensor product of f and
g is defined as the function f ⊗ g : X × Y → R with the property that for all x ∈ X and
for all y ∈ Y it holds that

(f ⊗ g)(x, y) = f(x)g(y).

Now given two set X and Y, assume H1 is a RKHS on X and H2 is a RKHS on Y. Then
define

H1⊗̄H2 = span {f ⊗ g | f ∈ F(X ), g ∈ F(Y)} .

This corresponds with the standard tensor product for vector spaces. Observe that so far
H1⊗̄H2 is just a vector space with no additional structure.

In order to add a Hilbert space structure we define 〈·, ·〉 : H1⊗̄H2 → R to be the function
with the property that for all f1 ⊗ g1, f2 ⊗ g2 ∈ H1⊗̄H2 it holds that

〈f1 ⊗ g1, f2 ⊗ g2〉H1⊗̄H2 = 〈f1, g1〉H1〈f2, g2〉H2 .

It can be shown that this defines a scalar product on H1⊗̄H2. Denote by H1 ⊗ H2 the
completion of H1⊗̄H2. Then we call H1 ⊗ H2 the tensor product of the Hilbert spaces
H1 and H2.

Next define a tensor product for kernels.

Definition A.4 (tensor product for kernels)
Let X and Y be two set and let k1 and k2 be kernels on X and Y respectively. Then we
define the tensor product of k1 and k2 as the function k1 ⊗ k2 : (X × Y)2 → R with the
property that for all ((x1, y1), (x2, y2)) ∈ (X × Y)2 it holds that

(k1 ⊗ k2)((x1, y1), (x2, y2)) = k1(x1, x2)k2(y1, y2).
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It follows immediately that k1 ⊗ k2 is a kernel on X × Y according to Definition 2.12. It
is also easy to check that if both k1 and k2 are positive semi-definite then also k1 ⊗ k2 is
positive semi-definite.

The following theorem shows that H1 ⊗H2 is a RKHS with reproducing kernel k1 ⊗ k2,
it can be found in Berlinet and Thomas-Agnan (2004, Theorem 13).

Theorem A.5 (tensor RKHS)
Let X and Y be two sets and let H1 be a RKHS on X and H2 be RKHS on Y. Denote
by k1 and k2 the corresponding reproducing kernels. Then H1 ⊗ H2 is a RKHS with
reproducing kernel k1 ⊗ k2.

Clearly the same result also holds for an arbitrary finite family of RKHS.

A.3 Bochner integral

In this section we shortly review the Bochner integral. This presentation is mainly based
on the lecture notes by Jentzen (2015) but similar definitions and statements are given
in Prévôt and Röckner (2007).

Definition A.6 (strongly measurable)
Let B be a Banach space, let (Ω,F , µ) be a finite measure space. Then a function f : Ω→
B is called strongly measurable if f is measurable and f(Ω) is separable.

In the case where B is separable, strong measurability coincides with the standard notion
of measurability.

Definition A.7 (simple function)
Let B be a Banach space, let (Ω,F , µ) be a finite measure space. Then a function f : Ω→
H is called simple if f(Ω) is finite.

Definition A.8 (Lp-space)
Let B be a Banach space, let p ∈ (0,∞), let (Ω,F , µ) be a finite measure space. Then the
set

Lp (µ, ‖·‖B) :=

{
f : Ω→ B | f is strongly measurable and

‖f‖Lp(µ,‖·‖B) :=

(∫
Ω
‖f(ω)‖pB µ(dω)

) 1
p

<∞
}

is called the space of p-integrable functions.

Since ‖·‖Lp(µ,‖·‖B) is not definite, it is in particular not a norm. The following class of
function spaces fixes this problem.

Definition A.9 (Lp-space)
Let B be a Banach space, let p ∈ (0,∞), let (Ω,F , µ) be a finite measure space and let ∼
be the equivalence relation on Lp (µ, ‖·‖B) satisfying for all f, g ∈ Lp (µ, ‖·‖B) that

f ∼ g :⇔ f = g µ-a.s..
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Then the set
Lp (µ, ‖·‖B) := L

p (µ, ‖·‖B)�∼
is called the space of equivalence classes of p-integrable functions.

Now ‖·‖Lp(µ,‖·‖B) is a norm on the space Lp (µ, ‖·‖B) and it in fact turns out that this
forms a Banach space.

Theorem A.10 (Bochner integral)
Let B be a Banach space, let (Ω,F , µ) be a finite measure space. Then

• there exists a unique bounded linear function I : L1 (µ, ‖·‖B)→ B with the property
that for all simple functions f : Ω→ B it holds that

I(f) =
∑

x∈f(Ω)

µ
(
f−1({x})

)
x

• and it holds for all f ∈ L1 (µ, ‖·‖B) that ‖I(f)‖B ≤ ‖f‖L1(µ,‖·‖B).

We call the function I the Bochner integral.

Generally we use the standard integral notation to write Bochner integrals, i.e. for f ∈
L1 (µ, ‖·‖B) we write

I(f) =

∫
Ω
f(ω)µ(dω).

Proposition A.11 (properties of the Bochner integral)
Let B be a Banach space, let H be a Hilbert space and let (Ω,F , µ) be a finite measure
space, then the following properties of the Bochner integral hold

(i) for all f ∈ L1 (µ, ‖·‖B) it holds that∥∥∥∥∫
Ω
f(ω)µ(dω)

∥∥∥∥
B

≤
∫

Ω
‖f(ω)‖B µ(dω)

(ii) for all f ∈ L1 (µ, ‖·‖B) and for all ϕ ∈ B′ that

ϕ

(∫
Ω
f(ω)µ(dω)

)
=

∫
Ω
ϕ (f(ω)) µ(dω)

(iii) for all f ∈ L1 (µ, ‖·‖H) and for all g ∈ H that〈∫
Ω
f(ω)µ(dω), g

〉
H

=

∫
Ω
〈f(ω), g〉H µ(dω).



Appendix B

Probability Theory

B.1 Convergence in distribution

The first theorem shows that convergence in distribution also implies a convergence of the
quantiles if the limit distribution is continuous (e.g. Lehmann and Romano, 2005, Lemma
11.2.1).

Theorem B.1 (convergence of quantiles)
Let (Fn)n∈N be a sequence of distribution functions on the real line converging weakly to a
distribution function F . Assume F is continuous and strictly increasing at y = F−1(1−α).
Then,

lim
n→∞

F−1
n (1− α) = F−1(1− α).

More generally, let (F̂n)n∈N be a sequence of random distribution functions satisfying
F̂n(x)

P→ F (x) as n → ∞ at all x which are continuity points of a fixed distribution
function F . Assume F is continuous and strictly increasing at F−1(1− α). Then,

F̂−1
n (1− α)

P−→ F−1(1− α)

as n→∞.

A further classical result is Slutsky’s theorem (e.g. Lehmann and Romano, 2005, Theorem
11.2.11)

Theorem B.2 (Slutsky’s theorem)
Suppose (Xn)n∈N is a sequence of real-valued random variables such that Xn

d→ X. Fur-

ther, suppose (An)n∈N and (Bn)n∈N satisfy An
P→ a and Bn

P→ b, where a and b are
constants. Then,

AnXn +Bn
d−→ aX + b.

The next result is a corollary of Slutsky’s theorem (e.g. Lehmann and Romano, 2005,
Corollary 11.2.3).
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Corollary B.3
Suppose (Xn)n∈N is a sequence of real-valued random variables such that Xn

d→ X, where
X has a continuous cumulative distribution function F . If (Cn)n∈N is a sequence of real-
valued random variables satisfying Cn

P→ c, where c is a constant, then

lim
n→∞

P (Xn ≤ Cn) = F (c).

B.2 Strong law of large numbers

The following theorem is a slight extension to the basic strong law of large numbers to
allow for triangular schemes.

Theorem B.4 (SLLN for triangular schemes)
Let (Xm,k)k∈{1,...,m}, m ∈ N be a triangular scheme of real-valued random variables satis-
fying

(i) for all m ∈ N, Xm,1, . . . , Xm,m are iid,

(ii) there exists c ∈ R such that limm→∞ E(Xm,1) = c and

(iii) there exists K ∈ R such that supm∈N E(X2
m,1) < K.

Then, it holds that
1

m

m∑
k=1

Xm,k
P-a.s.−→ c

as m→∞.

Proof We can assume without loss of generality that Xm,k ≥ 0 P-a.s., otherwise we could
simply consider the positive and negative part separately (i.e. X+

m,k := max{Xm,k, 0} and
X−m,k := max{−Xm,k, 0}). Begin by setting Sm :=

∑m
k=1Xm,k. Then, by Chebyshev’s

inequality we get for all ε > 0 that

P
(∣∣∣∣Smm − c

∣∣∣∣ > ε

)
≤

Var
(
Sm
m

)
ε2

=
Var (Sm)

m2ε2
. (B.1)

Using (i) and (iii) we further get

Var (Sm) =
m∑
k=1

Var (Xm,k) ≤
m∑
k

E
(
X2
m,k

)
≤ mK. (B.2)

Combining (B.1) and (B.2) this implies

∞∑
m=1

P
(∣∣∣∣Sm2

m2
− c
∣∣∣∣ > ε

)
≤
∞∑
m=1

K

m2ε2
<∞.

This however implies that
Sm2

m2

P-a.s.−→ c (B.3)
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as m→∞. Since we assumed Xm,k ≥ 0 it holds for all k ∈ N that Sk ≤ Sk+1 and hence
for all k ∈ {m2, . . . , (m+ 1)2} it holds that

m2

(m+ 1)2

Sm2

m2
=

Sm2

(m+ 1)2
≤ Sk

k
≤
S(m+1)2

m2
=

S(m+1)2

(m+ 1)2

(m+ 1)2

m2
.

Taking limits on both sides and using (B.3) completes the proof of Theorem B.4. �

The following theorem due to Beck and Giesy (1970, Theorem III.13) extends the strong
law of large number to Banach space valued random variables. An overview of further
options to extend the strong law is given by Beck et al. (1975).

Theorem B.5 (Extension of SLLN)
Let B be an arbitrary Banach space and let (Xk)k∈N be a sequence of independent B-valued
random variables such that for all k ∈ N it holds that E (Xk) = 0. If either

(i)
∑∞

k=1

E(‖Xk‖2B)
k2 <∞ and 1

n

∑n
k=1 E

(
‖Xk‖2B

)
→ 0 as n→∞ or

(ii) 1
n

∑n
k=1 esssup‖Xk‖B → 0 as n→∞,

then it holds that ∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥
B

P−a.s.−→ 0

as n→∞.

The following Theorem is due to Mourier and can be found in Beck et al. (1975).

Theorem B.6 (Extension of SLLN (i.i.d. setting))
Let B be a separable Banach space and let (Xk)k∈N be a sequence of independent and
identically distributed B-valued random variables such that for all k ∈ N it holds that
E (Xk) = 0. Then it holds that ∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥
B

P−a.s.−→ 0

as n→∞.



Appendix C

Auxiliary results and proofs

C.1 Notation

In order to make the calculations in this section more readable we use the following
conventions.

• for all j ∈ {1, . . . , d} and for all i1, i2 ∈ {1, . . . ,m} we set

kji1,i2 := kj(Xj
i1
, Xj

i2
)

• for all q, n ∈ N, for all functions g : X n → R and for all i1, . . . , iq, j1, . . . , jn ∈
{1, . . . ,m} we set

Ei1,...,iq (g(Xj1 , . . . ,Xjn)) =

∫
X
· · ·
∫
X
g(Xj1 , . . . ,Xjn)PX(dXi1) · · · PX(dXiq)

C.2 Expansions of h1 and h2

Lemma C.1 (expansion of h1)
Assume Setting 3.1. Then it holds for all z ∈ X that,

h1(z) =
1

d

E
 d∏
j=1

kj(zj , Xj
1)

− E
 d∏
j=1

kj(zj , Xj
j )


+
d− 1

d

E
 d∏
j=1

kj(Xj
1 , X

j
2)

− E
 d∏
j=1

kj(Xj
1 , X

j
j+1)


+

1

d

 d∑
r=1

E

 d∏
j 6=r

kj(Xj
2j−1, X

j
2j)

 kr(zr, Xr
2r)


−

d∑
r=1

E

 d∏
j 6=r

kj(Xj
1 , X

j
j+1)

 kr(zr, Xr
r+1)


115
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Proof Recall that
h1(z) = E (h(z,X1, . . . ,X2d−1)) .

Next we separate h into 3 terms as follows.

h(z1, . . . , z2d) =
1

(2d)!

∑
π∈S2d

 d∏
j=1

kj
(
zjπ(1), z

j
π(2)

) (=: b1)

+
1

(2d)!

∑
π∈S2d

 d∏
j=1

kj
(
zjπ(2j−1), z

j
π(2j)

) (=: b2)

− 2

(2d)!

∑
π∈S2d

 d∏
j=1

kj
(
zjπ(1), z

j
π(j+1)

) (=: b3).

Now we calculate E2,...,2d (h(X1, . . . ,X2d)) by considering these three terms separately.

b1: Begin by letting π ∈ S2d, then

E2,...,2d

 d∏
j=1

kjπ(1),π(2)

 =

E2,3

(∏d
j=1 k

j
2,3

)
if π(1) 6= 1 ∧ π(2) 6= 1

E2

(∏d
j=1 k

j
1,2

)
if π(1) = 1 ∨ π(2) = 1.

Counting how often each of these cases can occur for π ∈ S2d leads to

1

(2d)!

∑
π∈S2d

E2,...,2d

 d∏
j=1

kjπ(1),π(2)


=

(2d− 2)(2d− 1)!

(2d)!
E2,3

 d∏
j=1

kj2,3

+
2(2d− 1)!

(2d)!
E2

 d∏
j=1

kj1,2


=
d− 1

p
E2,3

 d∏
j=1

kj2,3

+
1

p
E2

 d∏
j=1

kj1,2

 (C.1)

b2: Begin by letting π ∈ S2d, r ∈ {1, . . . , p} such that π(2r − 1) = 1 or π(2r) = 1 then

E2,...,2d

 d∏
j=1

kjπ(2j−1),π(2j)

 = E2,...,2d+1

 d∏
j 6=r

kj2j,2j+1

 kr1,2r


Counting how many combinations are possible for each r and adding all different combi-
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nations up gives us

1

(2d)!

∑
π∈S2d

E2,...,2d

 d∏
j=1

kjπ(2j−1),π(2j)


=

2(2d− 1)!

(2d)!

d∑
r=1

E2,...,2d+1

 d∏
j 6=r

kj2j,2j+1

 kr1,2r


=

1

d

d∑
r=1

E2,...,2d+1

 d∏
j 6=r

kj2j,2j+1

 kr1,2r

 (C.2)

b3: Begin by letting π ∈ S2d, then

E2,...,2d

 d∏
j=1

kjπ(1),π(j+1)

 =


E2,...,d+2

(∏d
j=1 k

j
2,j+2

)
if π(1) 6= 1 ∧ · · · ∧ π(d+ 1) 6= 1

E2,...,d+1

(∏d
j=1 k

j
1,j+1

)
if π(1) = 1

E2,...,d+2

(∏d
j 6=r k

j
2,j+2k

r
1,2

)
if π(r + 1) = 1 for r ∈ {1, . . . , d}

Counting how often each of these cases can occur for different π ∈ S2d and adding all
cases up results in

1

(2d)!

∑
π∈S2d

E2,...,2d

 d∏
j=1

kjπ(1),π(j+1)


=
d− 1

2d
E2,...,p+2

 d∏
j=1

kj2,j+2

+
1

2d
E2,...,p+1

 d∏
j=1

kj1,j+1


+

1

2d

d∑
r=1

E2,...,p+2

 d∏
j 6=r

kj2,j+2k
r
1,2

 (C.3)

Finally combining (C.1), (C.1) and (C.1) completes the proof of Lemma C.1. �
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Lemma C.2 (expansion of h2 under H0)
Assume Setting 3.1. Then under H0 it holds for all z1, z2 ∈ X that,

(
2d

2

)
h2(z1, z2) =

d∏
r=1

kr(zr1, z
r
2) (=: a1)

+ (d− 1)2
d∏
r=1

E (kr(Xr
1 , X

r
2)) (=: a2)

+ (d− 1)
d∏
r=1

E (kr(zr1, X
r
1)) (=: a3)

+ (d− 1)

d∏
r=1

E (kr(zr2, X
r
1)) (=: a4)

+
d∑
r=1

kr(zr1, z
r
2)
∏
l 6=r
E
(
kl(X l

1, X
l
2)
)

(=: a5)

−
d∑
r=1

kr(zr1, z
r
2)
∏
l 6=r
E
(
kl(zl1, X

l
1)
)

(=: a6)

−
d∑
r=1

kr(zr1, z
r
2)
∏
l 6=r
E
(
kl(zr2, X

r
1)
)

(=: a7)

+
∑
r 6=s

E (kr(zr1, X
r
1))E (ks(zs2, X

s
1))

∏
l 6=r,s

E
(
kl(X l

1, X
l
2)
)

(=: a8)

− (d− 1)
d∑
r=1

E (kr(zr1, X
r
1))
∏
l 6=r
E
(
kl(X l

1, X
l
2)
)

(=: a9)

− (d− 1)
d∑
r=1

E (kr(zr2, X
r
1))
∏
l 6=r
E
(
kl(X l

1, X
l
2)
)

(=: a10).

Proof Begin by setting,

A :=
∑
π∈S2d

E3,...,2d

 d∏
j=1

kjπ(1),π(2)


B :=

∑
π∈S2d

E3,...,2d

 d∏
j=1

kjπ(2j−1),π(2j)


C :=

∑
π∈S2d

E3,...,2d

 d∏
j=1

kjπ(1),π(j+1)

 .



APPENDIX C. AUXILIARY RESULTS AND PROOFS 119

Then it holds that,

h2(X1,X2) = E3,...,2d (h(X1, . . . ,X2d)) =
1

(2d)!
(A+B − 2C) . (C.4)

Under the null hypothesis H0 the terms A,B and C can be simplified using combinatorial
arguments (similar to the ones used in the proof of Lemma C.1).

A = 2(2d− 2)!

d∏
r=1

kr1,2

+ (2d− 2)(2d− 3)(2d− 2)!

d∏
r=1

E3,4

(
kr3,4
)

+ 2(2d− 2)(2d− 2)!

d∏
r=1

E3

(
kr1,3
)

+ 2(2d− 2)(2d− 2)!

d∏
r=1

E3

(
kr2,3
)

B = 2(2d− 2)!

d∑
r=1

kr1,2
∏
l 6=r
E3,4

(
kl3,4

)
+ 4(2d− 2)!

∑
r 6=s

E3

(
kr1,3
)
E3

(
ks2,3
) ∏
l 6=r,s

E3,4

(
kl3,4

)

C = 2(2d− 2)!

d∑
r=1

kr1,2
∏
l 6=r
E3

(
kl1,3

)

+ (d− 1)(2d− 2)!

d∏
r=1

E3

(
kr1,3
)

+ (d− 1)(2d− 2)!

d∏
r=1

E3

(
kr2,3
)

+ (d− 1)(d− 2)(2d− 2)!
d∏
r=1

E3,4

(
kr3,4
)

+ (2d− 2)!
∑
r 6=s

E3

(
kr1,3
)
E3

(
ks2,3
) ∏
l 6=r,s

E3,4

(
kl3,4

)

+ (d− 1)(2d− 2)!
d∑
r=1

E3

(
kr1,3
)∏
l 6=r
E3,4

(
kl3,4

)

+ (d− 1)(2d− 2)!
d∑
r=1

E3

(
kr2,3
)∏
l 6=r
E3,4

(
kl3,4

)
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Plugging these expressions for A, B and C into (C.4) completes the proof of Lemma
C.2. �

Lemma C.3 (degeneracy under H0)
Assume Setting 3.1. Then under H0 it holds for all z ∈ X that

h1(z) = 0,

and therefore in particular that ξ1(h) = 0.

Proof Observe that under H0 it holds for all z ∈ X that

• E

 d∏
j=1

kj(zj , Xj
1)

 = E

 d∏
j=1

kj(zj , Xj
j )

 (C.5)

• E

 d∏
j=1

kj(Xj
1 , X

j
2)

 = E

 d∏
j=1

kj(Xj
1 , X

j
j+1)

 (C.6)

• E

 d∏
j 6=r

kj(Xj
2j−1, X

j
2j)

 kr(zr, Xr
2r)


= E

 d∏
j 6=r

kj(Xj
1 , X

j
j+1)

 kr(zr, Xr
r+1)

 . (C.7)

Plugging (C.5), (C.6) and (C.7) into the explicit form of h1 given in Lemma C.1 results
in

h1(z) = 0.

This completes the proof of Lemma C.3. �

Lemma C.4 (condition for non-degeneracy of ξ1(h) under HA)
Assume Setting 3.1 and let d = 2. Then under HA it holds that

ξ1(h) > 0 ⇔
∥∥∥Π
(
PX
)∥∥∥2

H
6=
∥∥∥Π
(
PX

1 ⊗ PX2
)∥∥∥2

H
.

Proof By Lemma C.1 it holds that

h1(z) =
1

2

[
E
(
k1(z1, X1

1 )k2(z2, X2
1 )
)
− E

(
k1(z1, X1

1 )
)
E
(
k2(z2, X2

1 )
)]

+ c, (C.8)

where
c =

1

2

[
E
(
k1(X1

1 , X
1
2 )k2(X2

1 , X
2
2 )
)
− E

(
k1(X1

1 , X
1
2 )k2(X2

1 , X
2
3 )
)]

is a constant. Jensen’s inequality implies that

ξ1(h) = E
(
[h1(X1)]2

)
− θ2

h ≥ E (h1(X1))2 − θ2
h = 0
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with equality if and only if h1(X1) is degenerate (i.e. P-a.s. constant). Assume h1(X1)
is degenerate, then by (C.8) it holds that

E
(
k1(X1

1 , X
1
2 )k2(X2

1 , X
2
2 )
)

= E
(
k1(X1

1 , X
1
2 )
)
E
(
k2(X1

1 , X
2
2 )
)
.

This can be written in terms of the mean embedding as follows∥∥∥Π
(
PX
)∥∥∥2

H
=
∥∥∥Π
(
PX

1 ⊗ PX2
)∥∥∥2

H
. �

Example C.5 (counter example for non-degeneracy of ξ1(h) under HA)
Assume setting 3.1. Let d = 3, let X = R3, let k1(x, y) = k2(x, y) = k3(x, y) = e−

(x−y)2

2 ,
let X : Ω→ {0, 1} be a random variable with P(X = 0) = P(X = 1) = 1

2 , let Y = X and
let Z be an independent copy of X.

Define X := (X,Y, Z), we will show that even though X,Y, Z are not jointly independent
it holds that h1(X) is a degenerate random variable. This in turn implies that ξ1(h) = 0.
By Lemma C.1 it holds that

h1(x) = 1
3E (k(x,X1)k(y, Y1)k(z, Z1))

− 1
3E (k(x,X1)k(y, Y2)k(z, Z3))

+ 1
3E (k(Y3, Y4)k(Z5, Z6)k(x,X2))

+ 1
3E (k(X1, X2)k(Z1, Z2)k(y, Y4))

+ 1
3E (k(X1, X2)k(Y3, Y4)k(z, Z6))

− 1
3E (k(Y1, Y3)k(Z1, Z4)k(x,X2))

− 1
3E (k(X1, X2)k(Z1, Z4)k(y, Y3))

− 1
3E (k(X1, X2)k(Y1, Y3)k(z, Z4)) + c

where

c = 2
3E (k(X1, X2)k(Y1, Y2)k(Z1, Z2))− 2

3E (k(X1, X2)k(Y1, Y3)k(Z1, Z4))

is a constant. Making use of independence and the fact that Y = X leads to

h1(x) = 1
3E (k(x,X1)k(y,X1))E (k(z,X1))

− 1
3E (k(x,X1))E (k(y,X1))E (k(z,X1))

+ 1
3E (k(X1, X2))E (k(X1, X2))E (k(z,X1))

− 1
3E (k(X1, X2)k(X1, X3))E (k(z,X1)) + c

Due to the simplicity of the random variable X it is straight forward to calculate the
expectations explicitly,

• E (k(w,X1)) = 1
2e
−w

2

2 + 1
2e
− (w−1)2

2

• E (k(x,X1)k(y,X1)) = 1
2e
−x

2+y2

2 + 1
2e
− (x−1)2+(y−1)2

2

• E (k(X1, X2)) = 1
2 + 1

2e
−1

2

• E (k(X1, X2)k(X1, X3)) = 1
4 + 1

2e
−1

2 + 1
4e
−1
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Using these expressions we can explicitly calculate h1 as follows,

h(x) = 1
24

[
e−

x2+y2+z2

2 + e−
(x−1)2+(y−1)2+(z−1)2

2

+ e−
x2+y2+(z−1)2

2 + e−
(x−1)2+(y−1)2+z2

2

− e−
x2+(y−1)2+(z−1)2

2 − e−
(x−1)2+y2+(z−1)2

2

− e−
(x−1)2+y2+z2

2 − e−
x2+(y−1)2+z2

2

]
+ c

The support of PX is supp(PX) = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}. It can be checked
directly that h1 is constant on supp(PX). Hence we have shown that h1(X) is degenerate.
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