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Chapter 1

Statistical Theory

1.1 Statistical models

In statistics we mathematically model observable phenomena with stochastic models. The starting
point for any statistical analysis is to construct a statistical model for the given problem. Such a
model consists of the three components; data, a stochastic model and a statistic.

Data We start by assuming some type of data is available (e.g., tabular measurements, images,
or time-series observations). In many cases (and in particular throughout this course), we assume
the data can be mathematically described as n repeated observations (x1, . . . , xn) ∈ Xn lying in
the same measurable observation space X . For example, these could be n repeated real-valued
measurements of some quantity, in which case the only differences between the xi’s would be the
measurement error.

Stochastic model We model the data generating process, i.e., the process that produced the
data, by a stochastic model. This allows us to use the language and tools of probability theory
to model randomness in the data. Furthermore, the stochastic model provides a formal way of
encoding prior knowledge that a practitioner might have about the data. Formally, a stochastic
model is defined as a subset of probability distributions on Xn, i.e.,

P ⊆ {P |P probability distribution on Xn}.

Underlying this modeling philosophy lies the idea that there is a (true) distribution P0 ∈ P such
that the data generating process consists of drawing a single random vector (X1, . . . , Xn) ∼ P0.1
We use the convention X = (X1, . . . , Xn) whenever the sample size n is clear from context.
The constraints used to define the model P and which encode prior knowledge are called model
assumptions. The following are some prominent examples.

• Independent and identically distributed assumption: X1, . . . , Xn are assumed to be indepen-
dent and identically distributed (i.i.d.). In this case it is enough to specify a distribution
over X1 instead of the joint vector.

• Parametric model assumption: There exists a parameter set Θ ⊆ Rp and a mapping θ 7→ Pθ

such that the statistical model can be expressed as P = {Pθ | θ ∈ Θ}.

• Density assumption: There exists a σ-finite measure ν that dominates the statistical model,
i.e., for all P ∈ P the Radon-Nikodym derivative p = dP

dν exists. The Radon-Nikodym
derivative p is called a density.

1We use the convention that a zero subscript indicates that a quantity is related to the true underlying distri-
bution.
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6 CHAPTER 1. STATISTICAL THEORY

Statistic Our goal in statistics is to infer (part of) the stochastic model. To do so, we construct
a statistic, which extracts the aspect of the stochastic model we are interested in from the data.
Formally, a statistic is a measurable function T : Xn → Γ which does not depend on the true
data generating distribution. In the statistical literature (and sometimes in these notes) the term
statistic can also refer to the random variable resulting from evaluating a statistic T at the random
data sample, i.e., T (X1, . . . , Xn), instead of the function T itself. Depending on the target of the
statistical analysis, we distinguish two inference goals.

• Estimation: If the goal is to estimate a particular parameter or property of the stochastic
model, the statistic is called an estimator. This is a function that outputs the best guess for
the target of interest based on the observed data.

• Hypothesis testing: If the goal is to validate a scientific hypothesis, the statistic is called
a hypothesis test. This is a function that takes the observations and uses them to output
whether or not the hypothesis is supported by the data.

We illustrate these three components with two toy examples.

Example 1.1 (Poisson model). Consider a small insurance company, which observes a given
number of claims each day. Assume we observed the number of claims X1, . . . , Xn during n = 200
days. A possible model is the Poisson model, in which X1, . . . , Xn are i.i.d. and the number of
claims on any particular day Xi has a Poisson distribution with parameter θ0 > 0, that is, for all
k ∈ N0 it holds that

Pθ0(Xi = k) =
θk0
k!

e−θ0 .

Imagine we are interested in the probability of at least 4 claims on a particular day i and call this
γ0. Then, it holds that

γ0 = Pθ0(Xi ≥ 4)

= 1− Pθ0(Xi ≤ 3)

= 1−
(
1 + θ0 +

θ20
2

+
θ30
3!

)
e−θ0

=: g(θ0).

We can construct an estimator to estimate γ0 using the plug-in principle discussed in Section 1.2.1
below. First, observe that the sample average θ̂(X) := 1

n

∑n
i=1 Xi is a possible estimator for θ0.

Combining this estimator with the function g defined above

γ̂(X) := g(θ̂(X))

leads to an estimator for γ0.

Example 1.2 (Regression model). Assume we want to find a functional relation between tulip
growth and the amount with which it was watered. We have measurements from n different tulips
(X1, Y1), . . . , (Xn, Yn), where Yi ∈ R is the size of the i-th tulip after one month and Xi ∈ R
is the amount of daily water the i-th tulip was given. A possible model for this is a (conditional
expectation) regression model, which is defined as the statistical model P consisting of all probability
distributions over (Xi, Yi) which satisfy that there exists εi ∼ µ0 such that

Yi = f0(Xi) + εi with E[εi|Xi] = 0,

where f0 is a function in a pre-specified function space F and µ0 is a probability distribution on R
with mean 0. Our goal is to estimate f0. One way to do this is to use the least-squares estimate
given by

f̂(X,Y ) := argmin
f∈F

n∑
i=1

(Yi − f(Xi))
2.

The case where the function class F consists of only linear functions is called linear regression
and is discussed in Section 1.3. As explained in Section 4.1.1 the conditional expectation E[Y |X]
minimizes the population least square loss.
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1.2 Parametric statistics
In parametric statistics, we make the assumption that there is a parameter space Θ ⊆ Rp and a
mapping θ 7→ Pθ that describes the stochastic model,

P = {Pθ | θ ∈ Θ}.

Throughout this section, we additionally assume i.i.d. observations and that there is a function
g : Θ → Γ that maps each parameter θ ∈ Θ to a parameter of interest γ = g(θ). We assume that
Γ ⊆ Rd. Much of statistics deals with constructing and analyzing the performance of an estimator
T : Xn → Γ that estimates the parameter of interest γ.

1.2.1 Constructing estimators
How to construct an estimator generally depends on the application at hand. There are, how-
ever, some general principles that work in many settings. A general principle is known as
plug-in estimation. It is based on the empirical measure which is the function P̂n : Xn →
{P |P probability distribution} defined for all x ∈ Xn by

P̂n(x) :=
1

n

n∑
i=1

δxi
,

where δxi
is the Dirac measure on X that puts mass one at xi and mass zero everywhere else. The

empirical measure is a general purpose estimator of the true data generating distribution Pθ0 . In
fact, for all θ ∈ Θ, the strong law of large numbers implies that limn→∞ P̂n(X)(A) = Pθ(A) Pθ-a.s.
for all measurable sets A ⊆ X . It is helpful to think of the empirical measure as an extension of
the empirical cumulative distribution function F̂n(X)(t) = 1

n

∑n
i=1 1{Xi≤t} from X = R to general

measurable spaces X .
A plug-in estimator is constructed by combining the empirical measure with a function that

maps the true distribution to the parameter of interest. More specifically, assume there is a
function

Q : P → Γ,

where P = P ∪ (∪n∈N{P̂n(x) |x ∈ Xn}) and which satisfies for all θ ∈ Θ that Q(Pθ) = g(θ) = γ.
Then the estimator defined by

T (X) = Q(P̂n(X))

is called a plug-in estimator. While this construction might seem rather abstract at first, most
estimators can be expressed in this form. Under further regularity conditions on the function Q it
is possible to prove general results about the asymptotic behavior of these estimators. Developing
this theory requires advanced mathematical tools from the field of empirical process theory and is
beyond the scope of this course.

We now present three more explicit procedures to construct estimators, each of which are
themselves plug-in estimators. For simplicity, we assume that the parameter of interest is the full
parameter, i.e., Γ = Θ, γ = θ and p = d.

Moment estimators This type of estimator is constructed by matching the empirical moments
to the population moments. More specifically, assume for simplicity X ⊆ R. Define for all
j ∈ {1, . . . , d} the j-th population moment for all θ ∈ Θ by

µj(Pθ) := Eθ[X
j
i ] =

∫
X
zjPθ(dz)

and the j-th empirical moment for all x = (x1, . . . , xn) ∈ Xn by

µ̂j(x) :=
1

n

n∑
i=1

xj
i =

∫
X
zjP̂n(x)(dz) = µj(P̂n(x)).
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Furthermore, assume the function m : Θ → Rd defined for all θ ∈ Θ by m(θ) := (µ1(Pθ), . . . , µd(Pθ))

is invertible. Then, the moment estimator θ̂moment : Xn → Θ is defined for all x ∈ Xn as

θ̂moment(x) := m−1(µ̂1(x), . . . , µ̂d(x)).

By construction the moment estimator is a plug-in estimator where the function Q : P → Θ is
defined for all P ∈ P as

Q(P ) := m−1(µ1(P ), . . . , µd(P )).

Maximum likelihood estimators This type of estimator is constructed by choosing the pa-
rameter for which the data have the highest likelihood of being observed. To define the likelihood
function we assume i.i.d. data and that for all θ ∈ Θ the density pθ corresponding to Pθ exists.
The likelihood function L : Θ×Xn → R is defined for all (θ, x) ∈ Θ×Xn as

L(θ, x) :=

n∏
i=1

pθ(xi). (1.2.1)

It quantifies how likely it is to observe (X1, . . . , Xn) = (x1, . . . , xn) if the true data generating
mechanism satisfies Xi

iid∼ Pθ. The maximum likelihood estimator (MLE) is defined for all x ∈ Xn

by the optimization
θ̂MLE(x) := argmaxθ∈Θ L(θ, x).

Additional regularity conditions, which we do not discuss here, are required for the MLE to exist
and be unique. It is common to optimize over the log-likelihood function ℓ : (θ, x) 7→ log(L(θ, x))
instead as this does not effect the location of the optimum but turns the product in (1.2.1) into a
sum. In the exercises you will show that this is also a plug-in estimator, where the Q function is
defined for all P ∈ P by Q(P ) := argmaxθ∈Θ EP [log(pθ(Xi))].

Minimal risk estimators This type of estimator is constructed by defining an (empirical) risk
function R : Θ × Xn → R which for all x ∈ Xn maps each potential parameter θ ∈ Θ to a value
R(θ, x) quantifying how good the data x fits the distribution Pθ. We require that the risk function
does not depend on the true data generating parameter θ0. We further denote by θ 7→ Eθ0 [R(θ,X)]
the population risk. One can then construct an estimator by minimizing the risk over all possible
parameters

θ̂risk(x) := argmin
θ∈Θ

R(θ, x).

Existence and uniqueness of the solution to this optimization problem requires additional as-
sumption. Often the risk has the form R(θ, x) = 1

n

∑n
i=1 L(θ, xi) for some (observation-wise)

loss L : Θ × X → R. In that case, the population risk corresponds to the expected loss
θ 7→ Eθ0 [L(θ,X1)].

The MLE is just a special case of a minimal risk estimator, which can be seen by taking the
negative log-likelihood as loss function. Minimal risk estimators often appear in the context of
regression models. A common risk in those cases is the mean squared prediction error given by
R(f, (x, y)) = 1

n

∑n
i=1(f(xi)− yi)

2. See Section 1.3.1 for an example.

1.2.2 Classical optimality theory

In this section, we consider several ways of assessing the quality of an estimator. Let T be an
estimator for the parameter of interest γ = g(θ) ∈ Rd. Given that θ0 ∈ Θ ⊆ Rp is the true
parameter, three fundamental criteria to quantify the quality of an estimator are the following.

• Bias
biasθ0(T ) := Eθ0 [T (X)]− g(θ0).
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• Variance

Varθ0(T ) := Covθ0(T (X)) = Eθ0

[
T (X) · T (X)⊤

]
− Eθ0

[
T (X)

]
· Eθ0

[
T (X)

]⊤
.

• Mean squared error

MSEθ0(T ) := Eθ0

[(
T (X)− g(θ0)

)⊤(
T (X)− g(θ0)

)]
.

An estimator T satisfying biasθ(T ) = 0 for all θ ∈ Θ is called unbiased. Since the bias and
mean squared error explicitly depend on the true parameter, they cannot be estimated by simply
replacing Pθ0 with P̂n(x). All three quantities are connected by the bias-variance decomposition
which states for all θ ∈ Θ that

MSEθ(T ) = biasθ(T )
⊤ biasθ(T ) + trace

(
varθ(T )

)
.

Ideally we want all three quantities to be small. The bias-variance decomposition can be useful
in this respect as it describes how the quantities are related to each other. Often, minimizing
either the bias or the variance leads to an increase in the other quantity, which is known as the
bias-variance trade-off. The three quantities provide a useful method for comparing two estimators
and can be used to define notions of optimality.

• Minimax optimal MSE: An estimator T of g(θ) is said to have minimax optimal MSE if

sup
θ∈Θ

MSEθ(T ) = inf
T̃

sup
θ∈Θ

MSEθ(T̃ ),

where the infimum is taken over all estimators T̃ of g(θ).

• Uniform minimum variance unbiased (UMVU): An unbiased estimator T of g(θ) is called
UMVU if among all other unbiased estimators it has the smallest variance uniformly across
all parameters. Formally, for all other unbiased estimators T̃ of g(θ) it holds that

∀θ ∈ Θ : Varθ(T̃ )−Varθ(T ) is positive semi-definite.

A lot of work has gone into analyzing different notions of optimality and how to compare
estimators. To showcase this, we present the Cramér-Rao lower bound, which is a famous result
related to UMVU estimators. For simplicity, we assume sufficient regularity of the statistical model
(e.g., that densities pθ exist and θ 7→ pθ is “smooth” with uniformly bounded derivatives). A key
ingredient for the Cramér-Rao lower bound and many other statistical analyses (in particular
involving MLEs) is the score function Sθ : Xn → Rp which is defined for all x ∈ Xn by

Sθ(x) := ∇θ log(L(θ, x)),

where L is the likelihood function defined in (1.2.1). It is sometimes also customary to define the
score function using only a single sample, i.e., sθ(xi) := ∇θ log(pθ(xi)).2 Given a data realization
x ∈ Xn, the value of the score function Sθ(x) quantifies how sensitive the likelihood is at each
parameter value θ – large score values imply that small changes in the parameter lead to large
changes in the likelihood. Based on the score function, the Fisher information is defined as the
function I : Θ → Rp×p satisfying for all θ ∈ Θ that

I(θ) := Covθ(Sθ(X)).

We denote by i : θ 7→ 1
nI(θ) the single sample Fisher information (here we implicitly assume the

samples are i.i.d.). The Fisher information quantifies the information the data contain about the
parameter θ. It can be shown, given sufficient regularity, that the following identities hold

Eθ[Sθ(X)] = 0 and I(θ) = −Eθ

[
(DθSθ)(X)

]
, (1.2.2)

2For independent samples the two definitions differ by a factor of n, that is, Sθ(x) =
∑n

i=1 sθ(xi). Therefore
always remember to check which definition is used.
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where DθSθ corresponds to the Jacobian matrix of Sθ with respect to θ and evaluated at θ. To get a
better intuition about the score function and Fisher information it helps to think about maximum
likelihood estimation. In order to compute the MLE one maximizes the log-likelihood. The MLE
therefore lies at a point at which the derivative of the log-likelihood (i.e., the score function) is
zero and for which the Hessian matrix (second derivative matrix) of the log-likelihood (i.e., the
derivative of the score function) is negative definite, which indicates a maximum. By (1.2.2) the
Fisher information is equal to the expected curvature of the maximum of the log-likelihood. This
means that a larger Fisher information implies a more peaked maximum which makes it easier to
estimate the parameter.

Using the Fisher information, we can state the Cramér-Rao lower bound which gives a lower
bound on the variance of an unbiased estimator.

Theorem 1.3 (Cramér-Rao lower bound).
Let T be an unbiased estimator of g(θ) and assume sufficient regularity on the statistical
model. Then it holds for all θ ∈ Θ that

Varθ(T )−
(
Dθg(θ)

)
I(θ)−1

(
Dθg(θ)

)⊤
is positive semi-definite.

Under the i.i.d. assumption and for Θ = R and g(θ) = θ, the bound implies that Varθ(T ) ≥
I(θ)−1 = 1

n i(θ)
−1. This shows that the lowest achievable variance for any unbiased estimator is of

order 1
n . By showing that an unbiased estimator achieves the lower bound it is possible to prove

that it is a UMVU estimator.

1.2.3 Classical asymptotic theory - large n

Classical asymptotic theory deals with settings in which the observation space X remains fixed
and the number of observations n tends to infinity. The idea behind this asymptotic regime is to
make statements about what effect additional data collection has on the statistical analysis. For
example, one might be interested in answering the following question.

How much does an estimator improve if the sample size is doubled?

To answer such questions, one assumes that one can construct a sequence of estimators (Tn)n∈N
and then analyzes the limit of Tn(X1, . . . , Xn) as n tends to infinity. The following two properties
are important:

• Consistency A sequence (Tn)n∈N is called a (weakly) consistent estimator of g(θ) if it holds
that

Tn(X1, . . . , Xn)
Pθ−→ g(θ) as n → ∞.

If the convergence holds Pθ-almost surely instead, this is also called strongly consistent.
Proving these types of statements generally relies on an application of a version of the
(strong) law of large numbers.

• Asymptotic normality A sequence (Tn)n∈N is called an asymptotically normal estimator
of g(θ) if there exists a positive semi-definite Σ ∈ Rd×d such that

√
n
(
Tn(X1, . . . , Xn)− g(θ)

) d−→ N (0,Σ) as n → ∞.

The matrix Σ is called the asymptotic variance. This type of statement is generally proved
by using a version of the central limit theorem.

It is possible to prove consistency and asymptotic normality for quite general classes of esti-
mators. The following theorem shows that given sufficient regularity MLEs are asymptotically
normal.
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Theorem 1.4 (Asymptotic normality of MLE).
Let (θ̂MLE

n )n∈N be a sequence of maximum likelihood estimators of θ and assume sufficient
regularity on the statistical model. Then it holds that

√
n
(
θ̂MLE
n − θ

)
d−→ N

(
0, i(θ)−1

)
as n → ∞.

1.2.4 Outlook: Statistical decision theory

The ideas introduced above are extended and unified in statistical decision theory. The details go
beyond the scope of this course but for the sake of completeness we provide a short introduction
here. The mathematical setup of statistical decision theory is similar to what we introduced in
Section 1.1 but the terminology is slightly different. The main ingredients are the following.

(i) A statistical model as described in Section 1.1.

(ii) An action space A that depends on the statistical objective (e.g., A = R for estimating a
real-valued parameter or A = {0, 1} for testing a hypothesis). This corresponds to the space
of the parameter of interest Γ in our previous terminology.

(iii) A set of decisions D ⊆ {δ | δ : Xn → A measurable}. Decisions correspond to statistics in
our previous terminology.

(iv) A loss function L : Θ×A → R, where L(θ, a) quantifies the loss of taking action a when the
true parameter is θ. For example, if A = R and Θ = R the squared error loss is given for all
θ ∈ R and a ∈ R by

L(θ, a) = (θ − a)2.

The decision theory loss function is slightly different from the one defined in Section 1.2.1,
which quantifies how well a data observation xi fits to a given parameter instead of an action.

(v) The risk function R : Θ×D → R is defined for all θ ∈ Θ and δ ∈ D by

R(θ, δ) := Eθ[L(θ, δ(X))].

Hence R(θ, δ) quantifies the risk of decision δ if θ is the true parameter. For example, for
the squared error loss and A = R and Θ = R the risk correspond to the MSE, that is,

R(θ, δ) := Eθ[(θ − δ(X))2].

Based on these ingredients, one can formally define various desirable properties and optimality
conditions of a decision (e.g., an estimator).

• A decision δ ∈ D is called inadmissible if there exists δ′ ∈ D such that

∀θ ∈ Θ : R(θ, δ′) ≤ R(θ, δ) and ∃θ ∈ Θ : R(θ, δ′) < R(θ, δ).

Otherwise it is called admissible. A surprising result due to Stein is that the ordinary least
squares estimator can be inadmissible in certain settings (see James-Stein estimator).

• A decision δ ∈ D is called minimax optimal if

sup
θ∈Θ

R(θ, δ) = inf
δ′∈D

sup
θ∈Θ

R(θ, δ′).

In Section 2.3.2 we will see that the kernel ridge regression estimator is minimax optimal up
to a constant factor.
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• A decision δ ∈ D is called Bayes estimator for a distribution π over Θ if

Eθ∼π[R(θ, δ)] = inf
δ′∈D

Eθ∼π[R(θ, δ′)].

Instead of considering the worst-case parameter as for minimax optimality, a Bayes estimator
minimizes an averaged risk (called Bayes risk) with respect to a distribution π over the
parameter space (the prior).

1.3 Linear regression and ordinary least squares
In this section, we introduce the linear regression model, which will appear several times as a
case-study throughout the course. Consider paired data (X1, Y1), . . . , (Xn, Yn), where Xi ∈ Rp

is called the vector of predictors and Yi the response. We use the matrix notation X ∈ Rn×p

and Y ∈ Rn×1 in which the observations have been aggregated row-wise and call X the design
matrix. A linear regression model assumes that there exists a regression parameter β0 ∈ Rp×1 and
a noise distribution µ0 ∈ Pnoise, where Pnoise is a set of distributions on Rn, such that the joint
distribution of (X,Y ) satisfies that there exists ε ∼ µ0 and

Y = Xβ0 + ε with E[ε|X] = 0. (1.3.1)

Formally, the stochastic model P consists of all distributions over (X,Y ) for which there exists
a parameter β0 ∈ Rp×1 and a noise distribution µ0 ∈ Pnoise such that the data are generated by
(1.3.1). This type of model is called semiparametric since parts of it are specified by the parameter
β0 while the remaining parts, in this case the distributions of µ0 and X, are not parameterized.
In the condition (1.3.1), the noise ε is stated explicitly, this can be avoided by simply assuming
the joint distribution of (X,Y ) satisfies

E[Y |X] = Xβ0.

In this formulation the noise is indirectly specified by ε := Y − E[Y |X]. We distinguish between
two types of approaches when analyzing regression models.

(1) The fixed-design approach which assumes X is non-random.

(2) The random-design approach which explicitly models the randomness of X.

In this course, we will mostly focus on the fixed-design setting as this makes many technical
considerations a lot easier. In both the fixed- and random-design case, it is common to further
constrain the allowed noise distributions Pnoise to make technical considerations easier.

Linear model with i.i.d. noise These are linear regression models in which the noise terms
are i.i.d. across observations, i.e., one assumes there exists a noise distribution µ0 on R such that
the noise term ε = (ε1, . . . , εn) satisfies that εi

i.i.d.∼ µ0. Under this assumption it is sufficient to
specify the equation of a single observation,

Yi = X⊤
i β0 + εi with E[εi|Xi] = 0.

Gaussian linear model These are linear regression models in which the noise terms follow
a multivariate Gaussian distribution. More specifically, assume there exists a positive definite
matrix Σ0 ∈ Rp×p such that

ε ∼ N (0,Σ0).

In the fixed-design case this model is fully parameterized by the regression parameter β0 and the
noise covariance Σ0. The Gaussian assumption makes many theoretical considerations substan-
tially easier. For example, it allows for a simple expression of the MLE for β0 (see Section 1.3.1
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below). Often one additionally combines the Gaussian assumption with the i.i.d. noise assump-
tion. The model is then fully specified – using a single additional noise parameter σ0 ∈ (0,∞) –
by the equation

Yi = X⊤
i β0 + εi with E[εi|Xi] = 0 and εi ∼ N (0, σ2

0).

The parameter of interest in linear regression is generally the regression parameter β0. The
ordinary least squares estimator is the most fundamental approach for estimating this parameter
and is an important building block for the theory discussed in this course.

1.3.1 Ordinary (linear) least squares
Consider the fixed-design setting and assume X⊤X is invertible (which implies n > p) and denote
by β0 the true underlying regression parameter. Ordinary least squares (OLS) estimates the
regression parameter β0 by minimizing the mean squared prediction error,

β̂OLS := argminβ∈Rp∥Y −Xβ∥22 =
(
X⊤X

)−1
X⊤Y.

Assuming that the noise terms are i.i.d. and satisfy E[εi] = 0 and Var(εi) = σ2
0 , it holds that

• E
[
β̂OLS

]
= E

[
(X⊤X)−1X⊤(Xβ0 + ε)

]
= β0

• Var
(
β̂OLS

)
= (X⊤X)−1X⊤ Cov(ε)X(X⊤X)−1 = σ2

0(X
⊤X)−1.

Moreover, it can be shown that the OLS estimator has minimum variance among all linear unbiased
estimators. This result is known as the Gauss-Markov theorem and makes no further assumptions
on the noise distributions.

Theorem 1.5 (Gauss-Markov Theorem).
Assume a linear regression model with i.i.d. noise (ε1, . . . , εn) that satisfies E[εi] = 0 and
Var(εi) = σ2

0 . Then, for all unbiased estimators β̂ := AY , where A ∈ Rp×n, it holds that

Var
(
β̂
)
−Var

(
β̂OLS

)
is positive semi-definite.

If one additionally assumes a Gaussian noise distribution, i.e., εi ∼ N (0, σ2
0), it can be shown

that β̂OLS is the MLE. To see this, first compute the log-likelihood which is given by

ℓ((β, σ2), (X,Y )) = −n
2 log(2πσ2)− 1

2σ2

n∑
i=1

(Yi −X⊤
i β)2

and then show that the maximum is attained at β̂OLS. Furthermore, the Fisher information is
given by

I(β, σ2) =

(
1
σ2X

⊤X 0
0 n

2σ4

)
.

Observe that we used σ2 as a parameter and not σ. Therefore, by Theorem 1.4 it immediately
follows that √

n
(
β̂OLS − β0

) d−→ N
(
0, σ2

0Σ
−1
X

)
as n → ∞,

where ΣX := limn→∞
1
nX

⊤X is assumed to exist. One can also directly use the central limit
theorem to prove this statement – also without assuming Gaussian noise distributions. However,
if the Gaussian noise assumption is true the much stronger finite sample result

β̂OLS ∼ N
(
β0, σ

2
0(X

⊤X)−1
)

is also true, which can be shown using the closed-form expression of β̂OLS and basic properties of
the Gaussian distribution.
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Chapter 2

Kernel Methods

In this chapter, we introduce a versatile class of non-parametric statistical procedures called kernel
methods. They extend many classical parametric methods such as linear regression, principal
component analysis and clustering to high-dimensional or otherwise complex data structures. The
key ingredient for these methods is a kernel function (introduced in Section 2.2.2) that maps the
input data into a well-behaved feature space and allows for efficient computations in that space.

Here, we focus on how to use kernel methods to extend linear regression to (additive noise)
non-linear regression, that is, models of the form Y = f0(X) + ε with E[ε] = 0, X non-random
and f0 a non-linear function. The theory, however, is much more general and in Section 2.4 we
discuss some of the further applications that can be solved with kernel methods.

2.1 Ridge regression
We start with the fixed-design linear regression model with i.i.d. noise, that is

Y = Xβ0 + ε,

where Y ∈ Rn×1, X ∈ Rn×p and ε = (ε1, . . . , εn)
⊤ ∈ Rn×1 with εi i.i.d. distributed with mean

zero distribution µ0. As seen in Section 1.3.1, β0 can be estimated with the OLS estimator

β̂OLS = (X⊤X)−1X⊤Y

as long as X⊤X is invertible. This estimator has two shortcomings:

(i) X⊤X is not necessarily invertible. In particular, since rank(X⊤X) ≤ min(p, n), the matrix
X⊤X can only be invertible if p < n.

(ii) The Gauss-Markov theorem (Theorem 1.5) only ensures that the OLS estimator is MSE
optimal among all linear and unbiased estimators, but there could be non-linear or biased
estimator with lower MSE.

Ridge regression estimator Both shortcomings can be addressed by adapting the OLS esti-
mator to include a penalty term on the parameter. Formally, we consider for all λ ∈ [0,∞) the
following estimators

β̂R
λ := argminβ∈Rp∥Y −Xβ∥22 + λ∥β∥22. (2.1.1)

We call β̂R
λ the ridge regression estimator. Several remarks are in order:

• The term λ∥β∥22 is called the penalty or regularization term and pushes β towards zero. In
particular, for increasing λ the ridge regression estimator converges to 0, while for λ going
to zero it converges to the OLS estimator (if it exists).

15
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• As in the case of the OLS, we assume E[εi] = 0 and hence ignore fitting an intercept term. If
this is not satisfied, we can first center (Xi, Yi), that is, (X̃i, Ỹi) = (Xi, Yi)− 1

n

∑n
ℓ=1(Xℓ, Yℓ)

and then proceeding with the centered data (X̃, Ỹ ) as discussed below. This corresponds
to adding an intercept term c to the mean squared error part of the loss in (2.1.1) (i.e.,
∥Y −Xβ − c∥22) but not to the penalty term.

• By explicitly minimizing the objective, it can be shown (exercise) that

β̂R
λ = (X⊤X + λ I)−1X⊤Y, (2.1.2)

where I denotes the (p× p)-identity matrix.

• The ridge regression estimator is a linear and (generally) biased estimator, which can be
seen from (2.1.2).

• The ridge regression estimator is not invariant to scaling of X. More specifically, scaling
a single coordinate of X affects the solution of (2.1.1) since the mean squared error term
remains fixed, e.g.,

(cX1, X2, . . . , Xd) · ( 1cβ
1, β2, . . . , βd)⊤ = Xβ

but the penalty term changes. To avoid this non-invariance, we use the convention that each
column of X is centered and scaled such that for all j ∈ {1, . . . , p} it holds that ∥Xj∥2 =

√
n.

Does the ridge regression estimator solve shortcomings (i) and (ii) above?

First, consider (i) and assume we are in the high-dimensional case (i.e., n < p). Then, for the
ridge regression estimator to exist, we require

(X⊤X︸ ︷︷ ︸
rank ≤n

+λ I) ∈ Rp×p

to be invertible. This is actually true for all λ > 0 as the following argument shows. Let A ∈ Rp×p

be an arbitrary symmetric matrix and define

RA(x) :=
x⊤Ax

x⊤x
. ("Rayleigh-Ritz" quotient)

By the min-max theorem it holds that

λmin(A) = min
x ̸=0

RA(x),

λmax(A) = max
x ̸=0

RA(x),

where λmin(A) and λmax(A) are the minimal and maximal eigenvalue of A, respectively. Now fix
A = X⊤X and B = λ I, then

λmin(A+B) = min
x ̸=0

RA+B(x)

= min
x ̸=0

(
x⊤Ax

x⊤x
+

x⊤Bx

x⊤x

)
≥ min

x ̸=0
RA(x) + min

x ̸=0
RB(x)

= λmin(A) + λmin(B)

≥ λ > 0. (2.1.3)

This implies that the minimal eigenvalue of A+B is strictly positive, which further implies that
A+B is invertible and the ridge regression estimator exists.

Second, consider (ii) and assume we are in the low-dimensional case (i.e., n > p) and X⊤X
is invertible. Then, the OLS estimator exists and we can compare the MSE of both estimators.
The following theorem shows that for appropriately chosen λ the ridge regression estimator has a
smaller MSE than the OLS estimator.
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Theorem 2.1.
For all λ ∈ (0, 2

σ2
0

∥β0∥2
2
), it holds that

E
[
(β̂OLS − β0)(β̂

OLS − β0)
⊤
]
− E

[
(β̂R

λ − β0)(β̂
R
λ − β0)

⊤
]

is (strictly) positive definite.

Proof. Denote by θ0 = (β0, σ
2
0) the two (true) parameters. Define the term we are interested in

and expand it as follows

(∗) := E
[
(β̂OLS − β0)(β̂

OLS − β0)
⊤
]
− E

[
(β̂R

λ − β0)(β̂
R
λ − β0)

⊤
]

= Varθ0(β̂
OLS)−

(
Varθ0(β̂

R
λ ) + biasθ0(β̂

R
λ ) biasθ0(β̂

R
λ )

⊤
)
. (2.1.4)

The last expression is a version of the bias-variance decomposition discussed in Section 1.2.2. We
now consider the bias and variance terms separately. First, the bias term is given by,

biasθ0(β̂
R
λ ) = E[β̂R

λ ]− β0

= (X⊤X + λ I)−1X⊤(Xβ0 + E[ε])− β0

= (X⊤X + λ I)−1(X⊤X + λ I−λ I)β0 − β0

= −λ(X⊤X + λ I)−1β0.

Second, the variance term is given by,

Varθ0(β̂
R
λ ) = E

[
(β̂R

λ − E[β̂R
λ ])(β̂

R
λ − E[β̂R

λ ]])
⊤
]

= E
[
(X⊤X + λ I)−1X⊤εε⊤X(X⊤X + λ I)−1

]
= σ2

0(X
⊤X + λ I)−1X⊤X(X⊤X + λ I)−1.

Hence, combining expressions for the bias and variance terms in (2.1.4), we get that

(∗) = σ2
0(X

⊤X)−1 − σ2
0(X

⊤X + λ I)−1X⊤X(X⊤X + λ I)−1

− λ2(X⊤X + λ I)−1β0β
⊤
0 (X⊤X + λ I)−1

= σ2
0MM−1(X⊤X)−1M−1M − σ2

0MX⊤XM − λ2Mβ0β
⊤
0 M

= M
[
σ2
0(X

⊤X + 2λ I+λ2(X⊤X)−1)− σ2
0X

⊤X − λ2β0β
⊤
0

]
M

= λM
[
σ2
0(2 I+λ(X⊤X)−1)− λβ0β

⊤
0

]
M,

where M = (X⊤X + λ I)−1. So (∗) is strictly positive definite if and only if

σ2
0(2 I+λ(X⊤X)−1)− λβ0β

⊤
0

is strictly positive definite. Using similar arguments as in (2.1.3), we get that

λmin(σ
2
0(2 I+λ(X⊤X)−1)− λβ0β

⊤
0 ) ≥ σ2

0λmin(2 I+λ(X⊤X)−1)− λ · λmax(β0β
⊤
0 )

≥ σ2
02− λ∥β0∥22,

where in the last step we used that X⊤X is positive semi-definite and λmax(β0β
⊤
0 ) = ∥β0∥22.

Therefore, we get that (∗) is strictly positive definite if 0 < λ < 2
σ2
0

∥β0∥2
2
. This completes the proof

of Theorem 2.1.
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To see why Theorem 2.1 addresses problem (ii), that is, it improves over the OLS in terms of
MSE, define M(β̂) := E[(β̂ − β0)(β̂ − β0)

⊤]. Then, it holds that

MSE(β̂) = trace(M(β̂)) =

d∑
j=1

e⊤j M(β̂)ej .

Hence by Theorem 2.1 we get that

MSE(β̂OLS)−MSE(β̂R
λ ) =

d∑
j=1

e⊤j (M(β̂OLS)−M(β̂R
λ ))ej > 0.

2.1.1 Comparison of OLS and ridge regression based on SVD
We now provide further intuition on the ridge regression estimator by comparing it to the OLS
estimator. For this, we use the singular value decomposition (SVD) summarized in Appendix A.1.

We consider the low dimensional setting and assume X⊤X is invertible. Then, using the thin
SVD X = UDV ⊤, we can express the predicted values of the OLS estimator as follows

Xβ̂OLS = X(X⊤X)−1X⊤Y

= UDV ⊤(V DU⊤UDV ⊤)−1V DU⊤Y

= UDV ⊤(V D2V ⊤)−1V DU⊤Y

= UU⊤Y

=

p∑
j=1

U j(U j)⊤Y︸ ︷︷ ︸
projection of Y onto Uj

.

Similarly we can express the predicted values of the ridge regression estimator as

Xβ̂R = X(X⊤X + λ I)−1X⊤Y

= UDV ⊤(V D2V ⊤ + λ I)−1V DU⊤Y

= UDV ⊤V (D2 + λ I)−1V ⊤V DU⊤Y

= UD(D2 + λ I)−1DU⊤Y

=

p∑
j=1

U j
d2j

d2j + λ︸ ︷︷ ︸
scaling factor

(U j)⊤Y,

where dj = Dj
j is the j-th diagonal element. Now if dj is small the scaling factor is also small,

while in contrast if dj is large the scaling factor is close to one. Therefore the ridge regression
estimator shrinks the contribution of principal components corresponding to small singular values
and focuses on the principal components with large singular values.

2.2 Non-linear feature maps and kernels
We now extend ridge regression to non-linear regression. The extension is based on transforming
the predictors X using non-linear feature maps. The idea is that the non-linear regression function
becomes a linear function on the transformed predictors. The two-step approach of transforming
the predictors and then applying linear methodology has many applications in statistics, e.g.,
smoothing splines and generalized additive models.

As our motivating example, we consider the fixed-design non-linear regression model with i.i.d.
noise given for all i ∈ {1, . . . , n} by

Yi = f0(Xi) + εi, (2.2.1)
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Figure 2.1: Data for two classification tasks given in Example 2.2. In the left plot, corresponding
to (i), the decision boundary is linear, while in the right plot, corresponding to (ii), it is non-linear.

with ε1, . . . , εn
iid∼ µ0 zero mean and f0 ∈ F with F ⊆ {f | f : Rp → R} a fixed Banach space,

e.g., Hölder-continuous functions with exponent α. Using a similar loss as in the case of ridge
regression, we can define a minimal risk estimator of the function f0 by

f̂ := argmin
f∈F

(
n∑

i=1

(Yi − f(Xi))
2 + λ∥f∥2F

)
.

This estimator is called the penalized (non-linear) least-squares estimator and is equal to the ridge
regression estimator when F is the space of linear functions (with appropriate norm). While we
have seen that this estimator is easy to compute for linear functions (ridge regression), this is no
longer the case for more general function classes F .

Can this optimization be reduced to the linear case?

Example 2.2. Consider two classification settings where X ∈ R2 and Y ∈ {0, 1}.

(i) Assume X ∼ µ0 for some distribution µ0 on R2 and

Y = 1(X1 −X2 > 0).

Data from such a model is shown in Figure 2.1 (left). The decision boundary (solid black
line) is linear in this case.

(ii) Assume X ∼ ν0 for some distribution ν0 on R2 and

Y = 1(X1X2 < 0).

Data from such a model is shown in Figure 2.1 (right). In this case it is not possible to
separate the two classes (Y = 0 and Y = 1) with a linear decision boundary. However, if
one adds the auxiliary predictor X̃ := X1X2, it is possible to separate the points linearly
with X̃ < 0.
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The example suggests to map the observed predictors X into a sufficiently rich feature space
such that the regression function f0 is linear in that space. Formally, we want to find a feature
map Φ : Rp → Rd and use linear methods on Φ(X) instead of X. In Example 2.2 (ii), we could
for example define for all x ∈ Rp the feature map

Φ(x) := (x1, x2, x1x2, x1x1, x2x2).

This comes with two added difficulties: (1) The feature space might be high-dimensional and (2) it
can be computationally costly (the above example with p predictors leads to (p2+3p)/2 features).

While (1) can be handled by ridge regression, we will use the so-called kernel-trick to solve the
computational bottleneck (2).

2.2.1 Kernel trick
Assume we have a fixed feature map Φ : Rp → Rd, such that the non-linear regression model in
(2.2.1) reduces to

Yi = Φ(Xi)
⊤β0 + εi,

with β0 ∈ Rd. For a fixed-design matrix X ∈ Rn×p denote by Φ(X) ∈ Rn×d the design matrix in
the feature space. The ridge regression estimator in this case is given by

β̂R
λ = (Φ(X)⊤Φ(X) + λ Id)

−1Φ(X)⊤Y. (2.2.2)

The computational cost of computing this estimator and similarly also for computing the predicted
values Ŷ = Φ(X)β̂R

λ is O(d3 + d2n).1 When d ≫ n we can reduce the computational complexity
by manipulating the expression for the ridge regression estimator as follows

β̂R
λ = (Φ(X)⊤Φ(X) + λ Id)

−1Φ(X)⊤Y

= (Φ(X)⊤Φ(X) + λ Id)
−1Φ(X)⊤(Φ(X)Φ(X)⊤ + λ In)(Φ(X)Φ(X)⊤ + λ In)

−1Y

= (Φ(X)⊤Φ(X) + λ Id)
−1(Φ(X)⊤Φ(X) + λ Id)Φ(X)⊤(Φ(X)Φ(X)⊤ + λ In)

−1Y

= Φ(X)⊤(Φ(X)Φ(X)⊤ + λ In)
−1Y.

In particular, this implies that the predicted values can be expressed as

Ŷ = Φ(X)β̂R
λ = Φ(X)Φ(X)⊤(Φ(X)Φ(X)⊤ + λ In)

−1Y,

which now only depend on the matrix K := Φ(X)Φ(X)⊤ ∈ Rn×n. In particular, the computational
complexity is reduced to O(n3 + n2d) which is substantially smaller if d ≫ n.

Remark 2.3. The entries in the matrix K only depend on the feature map Φ via inner-products,
i.e., Kij = ⟨Φ(Xi),Φ(Xj)⟩. Therefore, if these inner-products can be computed efficiently one does
not need to compute the feature map Φ(X) explicitly, which often allows to compute the matrix K
more efficiently. For example, for the feature map

Φ(x) := (1,
√
2x1, . . . ,

√
2xp, x1x1, . . . x1xp, x2x1, . . . , xpxp),

it holds that

⟨Φ(Xi),Φ(Xj)⟩ = 1 + 2

p∑
k=1

Xk
i X

k
j +

p∑
k,ℓ=1

Xk
i X

ℓ
iX

k
j X

ℓ
j

= (1 +

p∑
k=1

Xk
i X

k
j )

2

= (1 +X⊤
i Xj)

2.

Hence, each entry in K can be computed in p operations instead of d, reducing the computational
cost to O(pn2) instead of O(dn2).

1A short introduction on how to compute computational costs is given in Appendix A.2.
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2.2.2 Kernels
In this section, we introduce kernel functions which help us generalize the ideas of the previous
section. To this end, let X denote an arbitrary set (this will be the set on which the original
predictors live, i.e., Rp in the section before) and let Φ : X → H be a feature map, where H
is an inner-product space with inner-product ⟨· , ·⟩H. As we saw in Section 2.2.1, it is possible
to compute the predicted values of the non-linear ridge regression estimator in (2.2.2) by only
evaluating feature map via the function k : X × X → R defined for all x, x′ ∈ X by

k(x, x′) = ⟨Φ(x),Φ(x′)⟩H. (2.2.3)

The function k is an example of a kernel function which is the building block of any kernel method.
Formally, a kernel function is defined as follows.

Definition 2.4.
A positive definite kernel (or pd kernel for short) is a symmetric map k : X × X → R such
that for all n ∈ N and all x1, . . . , xn ∈ X the matrix K ∈ Rn×n defined for all i, j ∈ {1, . . . , n}
by

Kij = k(xi, xj)

is positive semi-definite.

It is helpful to think of pd kernels as similarity measures. For example, in (2.2.3) the value k(x, x′)
quantifies how similar the two features Φ(x) and Φ(x′) are in H. Pd kernels have some important
properties that are summarized in the following proposition.

Proposition 2.5 (Properties of pd kernels).

(i) Let k : X × X → R be a pd kernel, then for all x, x′ ∈ X it holds that

k(x, x′)2 ≤ k(x, x)k(x′, x′).

(ii) Let Φ : X → H be a feature map with H an inner-product space, then k : X × X → R
defined for all x, x′ ∈ X by

k(x, x′) := ⟨Φ(x),Φ(x′)⟩H

is a pd kernel.

(iii) Let k1, k2, . . . : X × X → R be pd kernels, then

– for α1, α2 ≥ 0, it holds that k := α1k1 + α2k2 is a pd kernel,

– the point-wise limit k := limn→∞ kn (if it exists) is a pd kernel and

– the product k := k1k2 is a pd kernel.

Proof. We only prove (i) and (ii). The proof of (iii) is part of the exercises.

(i) Fix x, x′ ∈ X , then

K :=

(
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

)
is positive semi-definite because k is a kernel. This implies, that det(K) ≥ 0 which implies
that

k(x, x)k(x′, x′) ≥ k(x, x′)k(x′, x) = k(x, x′)2

where we used that k is symmetric since it is a kernel. This proves the result.
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(ii) Firstly, the symmetry of k follows from the symmetry of the inner-product. Next, fix n ∈ N,
x1, . . . , xn ∈ X and α1, . . . , αn ∈ R. Then,

α⊤Kα =

n∑
i,j=1

αiαjk(xi, xj)

=

n∑
i,j=1

αiαj⟨Φ(xi),Φ(xj)⟩H

=
〈 n∑

i=1

αiΦ(xi),

n∑
j=1

αjΦ(xj)
〉
H

≥ 0.

This proves that k is positive definite and hence a pd kernel.

In the following example, we introduce some commonly used pd kernels on Rp and explain how
to prove that they are positive definite. Many more kernels exist and often the choice depends on
the application at hand.

Example 2.6 (pd kernels on X = Rp).

• Linear kernel:

k : (x, x′) 7→ x⊤x′

Proposition 2.5 (ii) immediately implies that this is a pd kernel.

• Polynomial kernel (of order d):

k : (x, x′) 7→ (1 + x⊤x′)d

To see that this is a pd kernel, use that 1 and x⊤x′ are pd kernels which by Proposi-
tion 2.5 (iii) implies that 1 + x⊤x′ is a pd kernel. Now, applying Proposition 2.5 (iii) d
times implies that k is a pd kernel.

• Gaussian kernel (with bandwidth σ > 0):

k : (x, x′) 7→ exp

(
− ∥x− x′∥22

2σ2

)
This is an important kernel in many applications. To see that it is positive definite, we use
∥x− x′∥22 = ∥x∥22 + ∥x′∥22 − 2⟨x, x′⟩ to get

k(x, x′) =

∞∑
ℓ=0

1
k!σ

−2k⟨x, x′⟩k︸ ︷︷ ︸
pd by Prop. 2.5 (iii)

exp
(
− ∥x∥22

2σ2

)
exp

(
− ∥x′∥22

2σ2

)
︸ ︷︷ ︸

pd by Prop. 2.5 (ii)

Using once more that the product of pd kernels is positive definite, we get that the Gaussian
kernel is positive definite.

A key advantage of kernel methods is that they can be defined on arbitrary sets, so they are
not restricted to Euclidean space.

Example 2.7 (pd kernels on more general spaces).

• Sobolev kernel (on X = [0, 1]):

k : (x, x′) 7→ min(x, x′)

This kernel corresponds to the covariance function of a Brownian motion, which directly
implies that it is pd. In the exercises, you will see how to prove it directly.
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• Jaccard similarity (on X = P({1, . . . , p})):

k : (x, x′) 7→


|x ∩ x′|
|x ∪ x′|

if x ∪ x′ ̸= ∅

1 otherwise

A proof that this is a pd kernel is given in the exercises.

• Aitchison kernel (on the simplex, i.e., X = ∆p−1 := {x ∈ [0, 1]p |
∑p

j=1 x
j = 1}):

k : (x, x′) 7→
p∑

j=1

log

(
xj + c

p
√∏p

k=1(x
k + c)

)
log

(
x′j + c

p
√∏p

k=1(x
′k + c)

)
,

for c > 0. This kernel can be used to analyze compositional data and has connections to the
log-contrast model [Huang et al., 2022]. To see that it is positive definite, use the feature
map Φ : ∆p−1 → Rp defined for all x ∈ ∆p−1 by

Φ(x) =

(
log

(
x1+c

p
√∏p

k=1(x
k+c)

)
, . . . , log

(
xp+c

p
√∏p

k=1(x
k+c)

))
and apply Proposition 2.5 (ii).

• Gaussian kernel (on a general Banach space X ):

k : (x, x′) 7→ exp

(
− ∥x− x′∥2X

2σ2

)
The only difference to the Gaussian kernel on Rp is that now we use the norm ∥·∥X corre-
sponding to the Banach space. This allows applying the kernel methodology in settings where
X is a random function in for example L2([0, 1]). A practical example of this is given in
chemistry when measuring chemical compounds with a mass spectrometer. In that case each
mass spectrometry profile can be modeled as a random function.

2.2.3 Reproducing kernel Hilbert spaces

In this section, we introduce a class of feature spaces that has many desirable properties, in
particular computationally. Formally, we make the following definition.

Definition 2.8 (Reproducing kernel Hilbert space).
Let H ⊆ {f | f : X → R} be a Hilbert space. Then, H is called a reproducing kernel Hilbert
space (RKHS) if there exists a pd kernel k : X × X → R such that

(i) ∀x ∈ X : k(x, ·) ∈ H,

(ii) ∀f ∈ H, x ∈ X : ⟨f, k(x, ·)⟩H = f(x).

A pd kernel k satisfying these properties is called a reproducing kernel for the RKHS H.
Property (ii) is called the reproducing property.

Given an RKHS H on X with reproducing kernel k, we can construct a feature map Φ : X → H
defined for all x ∈ X by

Φ(x) := k(x, ·).

By property (i) in the definition of an RKHS, Φ indeed maps into H. Moreover, by the reproducing
property (property (ii)) we also get that (2.2.3) is true.
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Example 2.9 (Space of linear functions on Rp is an RKHS). Consider the space of linear functions
on Rp defined by

H := {f : Rp → R | ∃β ∈ Rp such that ∀x ∈ Rp : f(x) = β⊤x}.

Moreover, define the inner-product ⟨·, ·⟩H for all f, g ∈ H by

⟨f, g⟩H = β⊤α,

where β, α ∈ Rp such that f(·) = β⊤(·) and g(·) = α⊤(·), respectively.2 The space H together
with ⟨·, ·⟩H forms a Hilbert space. To show that it is an RKHS, we now need to find a pd kernel
k : Rp ×Rp → R satisfying properties (i) and (ii) in Definition 2.8. For property (i), we need that
k(x, ·) is a linear function for all x ∈ Rp. Let βx ∈ Rp be the representation of this function, i.e.,
k(x, ·) = β⊤

x (·). Then, by property (ii), we get for all α ∈ Rp and x ∈ Rp that

α⊤x = ⟨α⊤(·), k(x, ·)⟩H = α⊤βx.

Therefore, it holds that βx = x. Hence, k has to have the form k : (x, x′) 7→ x⊤x′. This is however
just the linear kernel and therefore pd. Hence, we have shown that H together with ⟨·, ·⟩H is an
RKHS with reproducing kernel equal to the linear kernel.

As we show in the following theorem, every fixed pd kernel k corresponds to an RKHS. This
guarantees that if one starts with a pd kernel k, then there is a well-behaved feature space H ⊆
{f | f : X → R} and a feature map Φ : X → H such that k satisfies (2.2.3). The following theorem
makes this statement precise.

Theorem 2.10 (Every pd kernel induces an inner-product space and a feature map).
Let k : X ×X → R be a pd kernel. Then there exists an inner-product space Hk and a feature
map Φk : X → Hk such that for all x, x′ ∈ X it holds that

k(x, x′) =
〈
Φk(x),Φk(x

′)
〉
Hk

.

Proof. We prove the result by explicitly constructing the inner-product space as

Hk := {f : X → R | ∃n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ X : f(·) =
n∑

i=1

αik(xi, ·)}

and the feature map Φk : X → H for all x ∈ X by

Φk(x) := k(x, ·).

It now remains to be shown that there exists an inner-product on Hk which satisfies the desired
properties. To construct such an inner-product ⟨·, ·⟩ : Hk ×Hk → R, fix two arbitrary functions
f, g ∈ Hk with the expansions

f(·) =
n∑

i=1

αik(xi, ·) and g(·) =
m∑
i=1

βik(x
′
i, ·) (2.2.4)

and define

⟨f, g⟩ :=
n∑

i=1

m∑
j=1

αiβjk(xi, x
′
j).

This is well-defined (i.e., does not depend on the explicit expansion of f or g) since

⟨f, g⟩ =
n∑

i=1

αig(xi) =

m∑
j=1

βjf(x
′
j).

2This is a well-defined inner-product, because the coefficients β and α are unique.



2.2. NON-LINEAR FEATURE MAPS AND KERNELS 25

Furthermore, ⟨·, ·⟩ satisfies for all x, x′ ∈ X that

⟨Φk(x),Φk(x
′)⟩ = ⟨k(x, ·), k(x′, ·)⟩ = k(x, x′)

as desired. Next, we show that the function ⟨·, ·⟩ is indeed an inner-product, i.e., it is symmetric,
linear and positive definite, by explicitly checking the conditions.

• Symmetry:

⟨f, g⟩ =
n∑

i=1

m∑
j=1

αiβjk(xi, x
′
j) = ⟨g, f⟩

• Linearity: For a ∈ R and f, g, h ∈ Hk with f and g as in (2.2.4) it holds that

⟨ag + h, f⟩ =
n∑

i=1

αi(ag(xi) + h(xi))

= a

n∑
i=1

αig(xi) +

n∑
i=1

αih(xi)

= a⟨g, f⟩+ ⟨h, f⟩.

• Positive-definiteness:

(1) First we show that ⟨f, f⟩ ≥ 0 for all f ∈ Hk. Fix f ∈ Hk with the expansion as in
(2.2.4), then

⟨f, f⟩ =
n∑

i,j=1

αik(xi, xj)αj ≥ 0,

where we used that k is a pd kernel.
(2) Next, we show that ⟨f, f⟩ = 0 ⇒ f ≡ 0. To see this, we first observe that ⟨·, ·⟩ is itself

a pd kernel on Hk since for all γ1, . . . , γm ∈ R and f1, . . . , fm ∈ Hk it holds that

m∑
i,j=1

γi⟨fi, fj⟩γj =
〈 m∑

i=1

γifi,

m∑
i=1

γifi

〉
≥ 0.

Hence, for a fixed f ∈ Hk with expansion given in (2.2.4), we can apply Proposi-
tion 2.5 (i) to get that

(⟨k(x, ·), f⟩)2 ≤ ⟨k(x, ·), k(x, ·)⟩⟨f, f⟩ = k(x, x)⟨f, f⟩. (2.2.5)

Moreover, it holds that

⟨k(x, ·), f⟩ =
n∑

i=1

αik(x, xi) = f(x) (2.2.6)

Finally, combining (2.2.5) and (2.2.6) implies

f(x)2 ≤ k(x, x)⟨f, f⟩,

and hence ⟨f, f⟩ = 0 also implies f ≡ 0.

This completes the proof of Theorem 2.10.

Remark 2.11. The inner-product space in Theorem 2.10 can be turned into a Hilbert space (and
hence an RKHS) by including the limits of all Cauchy sequences. This requires verifying (left as an
exercise) that the inner-product is well-defined and satisfies the desired properties on the extended
space.
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Starting from a pd kernel, the construction in the proof of Theorem 2.10 can be used to derive
an explicit representation of the corresponding RKHS. This is done for the linear and Sobolev
kernel in the following example.

Example 2.12 (RKHSs with explicit representations).

• Linear kernel with X = Rp: We now consider the reverse direction of Example 2.9 and
start from the linear kernel k : (x, x′) 7→ x⊤x′. Using the representation from the proof of
Theorem 2.10 and taking the closure leads to the RKHS

Hk = {f : Rp → R | ∃α ∈ Rn, x1, . . . , xn ∈ Rp s.t. f(·) =
∑n

i=1 αik(xi, ·)}

= {f : Rp → R | ∃α ∈ Rn, x1, . . . , xn ∈ Rp s.t. f(·) = (
∑n

i=1 αixi)
⊤(·)}

= {f : Rp → R | ∃β ∈ Rp s.t. f(·) = β⊤(·)}
= {f : Rp → R | ∃β ∈ Rp s.t. f(·) = β⊤(·)}

with inner-product ⟨·, ·⟩Hk
given for all f, g ∈ Hk with f(·) = β⊤(·) and g(·) = γ⊤(·) by

⟨f, g⟩Hk
= β⊤γ.

The RKHS for the linear kernel is therefore isomorphic with Rp.

• Sobolev kernel with X = [0, 1]: Recall, that the Sobolev kernel is given by k : (x, x′) 7→
min(x, x′). The RKHS resulting from Theorem 2.10 can be expressed as

Hk = {f : [0, 1] → R |f a.e. differentiable,
∫ 1

0
f ′(x)2dx < ∞ and

∀t ∈ [0, 1] : f(t) =
∫ t

0
f ′(x)dx}

with inner-product

⟨f, g⟩Hk
=

∫ 1

0

f ′(x)g′(x)dx.

A proof of this result can be found in Wainwright [2019, Example 12.6]. By definition it in
particular holds for all f ∈ Hk that f is continuous and f(0) = 0.

Depending on the kernel it can be difficult to get an easy representation of the corresponding RKHS
beyond the one given in the proof of Theorem 2.10.

RKHSs are useful because they are easy to optimize over. In particular, it can be shown
that optimization over a (potentially infinite dimensional) RKHS can be expressed as a finite
dimensional optimization. This result is known as the representer theorem.

Theorem 2.13 (Representer theorem).
Let k : X × X → R be a pd kernel and H the corresponding RKHS. Furthermore, let

• c : Rn ×Xn × Rn → R be a loss function,

• J : [0,∞) → R strictly increasing and

• Y ∈ Rn, X = (X1, . . . , Xn) ∈ Xn and f ∈ H and K = (k(Xi, Xj))i,j the kernel matrix.a

Then,
f̂ ∈ argmin

f∈H
c(Y,X, f(X)) + J(∥f∥2H)︸ ︷︷ ︸

=:Q1(f)

if and only if f̂ =
∑n

i=1 α̂ik(Xi, ·) with

α̂ ∈ argmin
α∈Rn

c(Y,X,Kα) + J(α⊤Kα)︸ ︷︷ ︸
=:Q2(α)

.
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aFor x ∈ Xm and f : X → R we use the slight abuse of notation f(x) = (f(x1), . . . , f(xm)).

Proof. We begin with the “only if” direction. Assume f̂ ∈ H minimizes Q1. Then, the decompo-
sition

f̂ = u+ v (2.2.7)

with v ∈ V := span({k(X1, ·), . . . , k(Xn, ·)}) and u ∈ V ⊥ exists. This implies for all i ∈ {1, . . . , n}
that

f̂(Xi) = ⟨k(xi, ·), u+ v⟩H = ⟨k(Xi, ·), v⟩H = v(Xi). (2.2.8)

Moreover, it holds that

∥f̂∥2H = ⟨f̂ , f̂⟩H = ⟨u, u⟩H + ⟨v, v⟩H = ∥u∥2H + ∥v∥2H,

which since J is increasing implies that

J(∥f̂∥2H) = J(∥u∥2H + ∥v∥2H) ≥ J(∥v∥2H). (2.2.9)

Now, since (2.2.8) implies that Q1 only depends on u via the penalty term J(∥f∥2H), optimality of
f̂ together with (2.2.9) imply that J(∥f̂∥2H) = J(∥v∥2H). Since J is strictly increasing this however
also implies u ≡ 0. Hence, f̂ = v and there exist α1, . . . , αn such that

f̂(·) =
n∑

i=1

αik(Xi, ·).

This implies that ∥f̂∥2H = α⊤Kα and hence Q1(f̂) = Q2(α). Therefore, we have proved the “only
if” direction with α = α̂.

For the “if” direction, assume α̂ ∈ Rn minimizes Q2 and define f̂(·) :=
∑n

i=1 α̂ik(Xi, ·). Then,
it holds that Q1(f̂) = Q2(α̂). Next, fix f̃ ∈ H with

Q1(f̃) ≤ Q1(f̂). (2.2.10)

By the same argument as in the “only if” direction, we get for v ∈ V and u ∈ V ⊥ with f̃ = u+ v
that

Q1(v) ≤ Q1(f̃). (2.2.11)

Moreover, since v ∈ V there exists α ∈ Rn such that v(x) = Kα and ∥v∥2H = α⊤Kα. Hence,
Q1(v) = Q2(α) and by the optimality of α̂ we also have that

Q1(f̂) ≤ Q1(v). (2.2.12)

Together (2.2.10), (2.2.11) and (2.2.12) imply that Q1(f̂) = Q1(f̃) which implies that f̂ minimizes
Q1. This completes the proof of Theorem 2.13.

2.3 Kernel ridge regression
We now apply the theory on kernels and RKHSs to construct a non-linear regression procedure.
Consider again the fixed-design non-linear regression problem

Y = f0(X) + ε,

with ε ∼ µ0 mean zero and f0 ∈ F with F ⊆ {f | f : X → R} a fixed function class. As we saw
in Section 2.2, we can construct an estimator for f0 using the following approach: First, assume
there exists a known feature map Φ : X → Rd such that

f0(·) = β⊤
0 Φ(·).



28 CHAPTER 2. KERNEL METHODS

Second, apply standard ridge regression as shown in Figure 2.2 (top). In Section 2.2.1, we saw that
this approach can be sped up computationally using the kernel trick. This makes the approach
feasible even if the dimension of the feature space Rd is large. Nevertheless, two practical issues of
this approach remain: It can only be applied for finite-dimensional feature spaces and it requires
to explicitly construct the feature map Φ.

The theory we developed in Sections 2.2.2 and 2.2.3 suggests a second approach: Assume
we are given a kernel k such that the corresponding RKHS (given by Theorem 2.10) is equal
to the function class F . Then, we can apply the representer theorem to efficiently estimate the
corresponding penalized regression estimator, see Figure 2.2 (bottom). This approach is known as
kernel ridge-regression. The two approaches are mathematically equivalent whenever the RKHS
is finite dimensional and the feature map and kernel satisfy for all x, x′ ∈ X that

k(x, x′) = ⟨Φ(x),Φ(x′)⟩.

However, kernel ridge-regression can also be applied with infinite dimensional feature spaces and
only requires specification of the kernel.
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feature map Φ : X → Rd

feature space Rd

Yi = β⊤
0 Φ(Xi) + εi,

for β0 ∈ Rd

Goal:
Estimate f0(·) = β⊤

0 Φ(·)

β̂ = argminβ∈Rd

∑n
i=1(Yi − β⊤Φ(Xi))

2 + λ∥β∥22

Use the kernel matrix K = Φ(X)Φ(X)⊤:

• β̂ = Φ(X)(K + λ I)−1Y

• Ŷ = Φ(X)β̂ = K(K + λ I)−1Y

• f̂(·) = Φ(·)⊤β̂

kernel k : X × X → R
RKHS Hk (Thm. 2.10)

Yi = f0(Xi) + εi

for f0 ∈ Hk

Goal:
Estimate f0

f̂ = argminf∈Hk

∑n
i=1(Yi − f(Xi))

2 + λ∥f∥2Hk

Use representer theorem (Thm. 2.13):

⇒ f̂(·) =
∑n

i=1 α̂ik(Xi, ·) = α̂⊤k(X, ·)

• α̂ = (K + λ I)−1Y

• equivalent to approach 1 with:
− feature space Rn

− feature map Φ : x ∈ X 7→ k(X,x) ∈ Rn

Figure 2.2: Overview of non-linear regression with kernels. Two approaches are possible: Either
starting with a feature map (top) or starting with a kernel (bottom). Approach 2 is called kernel
ridge regression and is mathematically equivalent to approach 1 whenever the RKHS is finite
dimensional. Moreover, in practice, it is often easier to specify a pd kernel instead of a feature
map, making the second approach more versatile.

2.3.1 Theoretical properties of kernel ridge regression
Assume we observe data (Y1, X1), . . . , (Yn, Xn) from

Yi = f0(Xi) + εi.

Throughout this section, we use the following model assumptions and notational conventions:
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(i) Fixed-design, that is, X1, . . . , Xn ∈ X are deterministic.

(ii) ε1, . . . , εn are real-valued i.i.d. with E[εi] = 0 and Var(εi) = σ2
0 > 0.

(iii) f0 ∈ H, where H is RKHS with reproducing kernel k : X × X → R.

(iv) ∥f0∥H ≤ 1.3

(v) K := (k(Xi, Xℓ))i,ℓ kernel matrix with

K = UDU⊤

where dj := Dj
j with d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 and U is orthogonal.

Recall that the kernel ridge regression estimator with penalty λ > 0 is defined by

f̂λ := argmin
f∈H

(
n∑

i=1

(Yi − f(Xi))
2 + λ∥f∥2H

)
.

Using the representer theorem (Theorem 2.13) the estimator has the following closed form repre-
sentation

f̂λ =

n∑
i=1

α̂λ
i k(Xi, ·) with α̂λ = (K + λ I)−1Y.

We now want to assess theoretically, whether this is a good estimator. The following theorem
provides an upper bound on the mean squared prediction error.

Theorem 2.14 (Upper bound on MSPE).
Given the setting described at the beginning of Section 2.3.1, the mean squared prediction
error (MSPE) can be bounded from above by

E
[
1

n

n∑
i=1

(f0(Xi)− f̂λ(Xi))
2

]
≤ σ2

0

n

1

λ

n∑
i=1

min

(
di
4
, λ

)
︸ ︷︷ ︸

∼ variance

+
λ

4n︸︷︷︸
∼ bias

=: δn(λ).

The separation of the upper bound into a bias and a variance term follows from the decomposition
in the proof.

Proof. We make use of two statements that follow from the closed form solution for the ridge
regression estimator and properties of the RKHS H. Firstly,

(f̂λ(X1), . . . , f̂λ(Xn))
⊤ = K(K + λ I)−1Y (2.3.1)

and secondly, there exists α ∈ Rn such that

(f0(X1), . . . , f0(Xn))
⊤ = Kα and α⊤Kα ≤ ∥f0∥2H ≤ 1. (2.3.2)

Both (2.3.1) and (2.3.2) are proved in the exercises.
Next, define θ := U⊤Kα = DU⊤α, which also implies Uθ = Kα, and expand the MSPE using

(2.3.1) and (2.3.2) as follows

E
[
∥f̂λ(X)− f0(X)∥22

]
= E

[
∥K(K + λ I)−1(Uθ + ε)− Uθ∥22

]
= E

[
∥UDU⊤(UDU⊤ + λUU⊤)−1(Uθ + ε)− Uθ∥22

]
= E

[
∥U(D(D + λ I)−1U⊤(Uθ + ε)− θ)∥22

]
= E

[
∥D(D + λ I)−1(θ + U⊤ε)− θ∥22

]
= ∥(D(D + λ I)−1 − I)θ∥22︸ ︷︷ ︸

term 1

+E
[
∥D(D + λ I)−1U⊤ε∥22

]︸ ︷︷ ︸
term 2

.

3This can always be achieved by rescaling the kernel k.
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We now consider the two terms separately.
(term 1): Expanding term 1 leads to

∥(D(D + λ I)−1 − I)θ∥22 =

n∑
i=1

(
di

di + λ
− 1

)2

θ2i =

n∑
i=1

λ2

(di + λ)2
θ2i . (2.3.3)

Next, define D+ to be the diagonal matrix with d−1
i if di > 0 and zero otherwise. Then, it holds

that ∑
i:di>0

θ2i
di

= ∥
√
D+θ∥22 = α⊤UDD+DU⊤α = α⊤Kα ≤ 1,

where we used that θ = DU⊤α. Hence, the expression (2.3.3) can be simplified to

n∑
i=1

λ2

(di + λ)2
θ2i =

∑
i:di>0

θ2i
di

diλ
2

(di + λ)2

≤

( ∑
i:di>0

θ2i
di

)(
max
i:di>0

diλ
2

(di + λ)2

)

≤ 1

(
max

i∈{1,...,n}

diλ
2

(di + λ)2

)
≤ λ

4
,

where for the first inequality we used Hölder’s inequality and for the last inequality we used
(a+ b)2 ≥ 4ab.
(term 2): Term 2 can be bounded as follows

E
[
∥D(D + λ I)−1U⊤ε∥22

]
= E

[
{D(D + λ I)−1U⊤ε}⊤{D(D + λ I)−1U⊤ε}

]
= E

[
trace

(
D(D + λ I)−1U⊤εε⊤UD(D + λ I)−1

)]
= σ2

0 trace
(
D2(D + λ I)−2

)
= σ2

0

n∑
i=1

d2i
(di + λ)2

≤ σ2
0

n∑
i=1

min

(
1,

di
4λ

)

=
σ2
0

λ

n∑
i=1

min

(
λ,

di
4

)
,

where we again used (a+ b)2 ≥ 4ab for the inequality.
Combining the bounds for term 1 and term 2, completes the proof of Theorem 2.14.

Theorem 2.14 provides an upper bound on how large the MSPE can be. To better understand
the bound, we can express it in terms of a shrinking penalty λn = λ

n and µ̂n,i := di

n (which
corresponds to the eigenvalues of the scaled kernel matrix 1

nK) as follows

E
[
1

n

n∑
i=1

(f0(Xi)− f̂λ(Xi))
2

]
≤ σ2

0

λn

1

n

n∑
i=1

min

(
µ̂n,i

4
, λn

)
+

λn

4
=: δn(λn).

Using this parametrization, we can explicitly bound the term δn(λn) for different kernels.
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Linear kernel

For the linear kernel it holds that 1
nK = 1

nXX⊤. As we saw the RKHS in this case corresponds
to space of linear functions and hence the model given at the beginning of Section 2.3.1 is a
linear regression model. Assume that we are in the low-dimensional and invertible case (i.e.,
rank(XX⊤) = p). Then, it holds that

µ̂n,p+1, . . . , µ̂n,n = 0.

This in turn implies that
n∑

i=1

min

(
µ̂n,i

4
, λn

)
≤ pλn,

which further implies that the bound satisfies

δn(λn) ≤ σ2
0

p

n
+

λn

4
. (2.3.4)

It is easy to check that simply applying OLS leads to a similar rate of O( pn ). As we will discuss
in Chapter 3 this is in a certain sense the optimal achievable rate in the non-sparse setting.

Sobolev kernel

Bounding δn becomes more complicated for kernels corresponding to infinite dimensional RKHSs.
As an example we consider the Sobolev kernel. For the analysis we use a random-design version of
the setting at the beginning of Section 2.3.1, where X1, . . . , Xn

iid∼ ν for some distribution ν. Since
the empirical eigenvalues µ̂n,i are now random quantities, we will first connect them to population
quantities that only depend on the kernel. To this end, we use Mercer’s theorem, which provides
a series expansion of every kernel and connects it to a bounded linear operator.

Theorem 2.15 (Mercer’s theorem).
Let (X , ν) be a compact measured space. Then, for any positive definite kernel k : X×X → R
satisfying

∫
X×X k(x, y)2ν(dx)ν(dy) < ∞, there exits (µj)j∈N ⊆ R with µ1 ≥ µ2 ≥ . . . ≥ 0

and an orthonormal basis (ej)j∈N ⊆ L2(X , ν) satisfying for ν-almost all x, x′ ∈ X that

k(x, x′) =

∞∑
j=1

µjej(x)ej(x
′),

and that the infinite series converges absolutely and uniformly. Furthermore, the linear
bounded operator K : L2(X , ν) → L2(X , ν) defined for all f ∈ L2(X , ν) by

K(f) =

∫
X
k(x, ·)f(x)ν(dx)

has eigenvalues (µj)j∈N and eigenvectors (ej)j∈N.

A proof of this result can be found in Wainwright [2019, Theorem 12.20]. It furthermore holds
that the empirical eigenvalues µ̂j approach the eigenvalues of the population kernel operator µj

as n tends to infinity. Moreover it is possible to prove [see e.g., Lundborg et al., 2022, Lemma 18,
Supporting information] that for all λ > 0 it holds that

E

[
n∑

i=1

min

(
µ̂n,i

4
, λ

)]
≤

∞∑
i=1

min

(
µi

4
, λ

)
. (2.3.5)
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Finally, in order to bound δn for the Sobolev kernel, we need to explicitly compute the eigen-
values of the corresponding kernel operator. For the Sobolev kernel together with the measure
ν = Unif(0, 1) this computation is given in Wainwright [2019, Example 12.23] and results in

µj =
4

π2(2j − 1)2
and ej : x 7→ sin

(
x

√
µj

)
.

Combining all these results, we end up with the following corollary of Theorem 2.15.

Corollary 2.16 (Upper bound for MSPE with Sobolev kernel).
Assume a random-design version of the setting at the beginning of Section 2.3.1, where
X1, . . . , Xn

iid∼ Unif(0, 1) and independent of ε1 . . . , εn. Let f̂λ be the kernel ridge regression
estimator based on the Sobolev kernel. Then, it holds that

E
[
1

n

n∑
i=1

(f0(Xi)− f̂λ(Xi))
2

]
= O

(
σ2
0

n
√
λn

+ λn

)
.

In particular, the optimal choice λn ∼
(

σ2
0

n

)2/3
leads to

E
[
1

n

n∑
i=1

(f0(Xi)− f̂λ(Xi))
2

]
= O

((
σ2
0

n

)2/3)
.

Proof. First, we plug-in the expression for the eigenvalues µj and then use an integral bound as
follows,

∞∑
j=1

min

(
µj

4
, λn

)
=

∞∑
j=1

min

(
1

π2(2j − 1)2
, λn

)
≤
∫ ∞

0

min

(
1

π2(2x− 1)2
, λn

)
dx.

Next, defining c∗ := 1
2

(
1√

π2λn
+ 1
)

we can further bound the integral to get∫ ∞

0

min

(
1

π2(2x− 1)2
, λn

)
dx ≤ λnc

∗ +
1

π2

∫ ∞

c∗

1

(2x− 1)2
dx =

√
λn

π
+

λn

2
= O(

√
λn),

as n → ∞. Finally, combining this bound with (2.3.5) and the definition of δ(λn) leads to

E[δ(λn)] = O
(

σ2
0

n
√
λn

+ λn

)
,

which together with Theorem 2.14 proves the first part of Corollary 2.16. The optimal choice λn

is then found by minimizing this bound with respect to λn.

Gaussian kernel

For the Gaussian kernel on [−1, 1] and ν = Unif(−1, 1), the eigenvalues of the kernel operator can
be shown to satisfy

µj ≍ exp(−cj log(j)),

for some constant c > 0 and where ≍ denotes that the two quantities are asymptotically equivalent
up to constants, i.e., limj→∞

µj

exp(−cj log(j)) and limj→∞
exp(−cj log(j))

µj
exist and are finite. A similar

argument as in the proof of Corollary 2.16 leads to the bound

E
[
1

n

n∑
i=1

(f0(Xi)− f̂λ(Xi))
2

]
= O

(
σ2
0
log(cn)

n

)
,
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as n goes to infinity [Wainwright, 2019, Example 13.21]. While the convergence rate is substantially
faster than for the Sobolev kernel, the eigenvalues µj also decay a lot faster indicating that the
RKHS for the Gaussian kernel is less rich. A formal result connecting the eigenvalues of a pd
kernel with its RKHS can be found in Wainwright [2019, Corollary 12.26].

2.3.2 Lower bound

An obvious follow up question to Theorem 2.14 is whether it is possible to achieve better rates.
The following result answers this question with “no” by providing a lower bound, that achieves
(up to constants) the same asymptotic rate.

Theorem 2.17 (Lower bound on MSPE [Yang et al., 2017]).
Assume the setting described at the beginning of Section 2.3.1. Then, it holds that

inf
f̂∈H

sup
f0∈H:∥f0∥H≤1

E
[
1

n

n∑
i=1

(f0(Xi)− f̂(Xi))
2

]
≥ c inf

λ>0
δn(λ).

2.4 Outlook: Non-parametric hypothesis testing

So far we have only considered kernel methods for estimating non-linear regression functions. The
theory on pd kernels and RKHSs is however much more general and can be applied to various
different tasks. In this section, we shortly present one additional application to which kernel
methods have been successfully applied. Specifically, we consider the problem of non-parametric
hypothesis testing. Two highly used kernel-based tests are the Hilbert-Schmidt Independence
Criterion (HSIC) test for independence testing [Gretton et al., 2005] and the Maximum Mean
Discrepancy (MMD) test for two-sample testing [Gretton et al., 2012]. Both tests are based on a
method for embedding distributions into RKHSs, called kernel mean embedding.

Let P be a distribution on X and let H be an RKHS with reproducing kernel k. Then, the
kernel mean embedding of P into H, is defined by

Π(P ) :=

∫
X
k(x, ·)P (dx) = EX∼P [k(X, ·)],

where the integral/expectation is a Bochner integral.4 It can be shown that Π(P ) is an element
in the RKHS H. Using the kernel mean embedding thus allows to compare different distributions
using the RKHS norm ∥·∥H. We now discuss how this embedding can be applied to two-sample
and independence testing, respectively.

• Two-sample testing: Assume we are given (X1, . . . , Xn) i.i.d. copies of X ∈ X and (Z1, . . . , Zm)
i.i.d. copies from Z ∈ X . Denote by PX and PZ the distributions of X and Z, respectively.
We now want to determine whether the two data sets come from the same distribution, i.e.,
whether PX = PZ . The idea behind MMD is to embed both distributions into an RKHS
and measure their difference in the RKHS norm. Formally, let k : X → R be a pd kernel
and H the corresponding RKHS, then MMD is defined by

MMD(PX , PZ) := ∥Π(PX)−Π(PZ)∥2H.

Under additional assumptions on the kernel k it is possible to show that the kernel mean
embedding is injective, which means that MMD(PX , PZ) = 0 if and only if PX = PZ . We can
thus see the MMD as a non-parametric distance between the two distributions PX and PZ .
The MMD can be used to construct a hypothesis test for the null hypothesis that X

d
= Z.

4Bochner integrals extend the Lebesgue integral to functions with values in Banach spaces.
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• Independence testing: Assume we are given (X1
1 , X

2
1 ), . . . , (X

1
n, X

2
n) i.i.d. copies of X =

(X1, X2) ∈ X 1 × X 2 and let PX denote the joint distribution of X and PX1 and PX2 the
respective marginal distributions. We now want to determine whether the two variables X1

and X2 are independent, i.e., X1 ⊥⊥ X2. Formally, X1 ⊥⊥ X2 if and only if PX = PX1⊗PX2 .
The idea behind the HSIC test is to embed both the joint PX and the product of the marginals
PX1 ⊗ PX2 into an RKHS and measure their difference in the RKHS-norm. Formally, let
k : X 1 ×X 2 → R be a pd kernel and H the corresponding RKHS, then HSIC is defined by

HSIC(PX) := ∥Π(PX)−Π(PX1 ⊗ PX2)∥2H.

Under additional assumptions on the kernel k it is possible to show that the kernel mean
embedding is injective, which means that HSIC(PX) = 0 if and only if X1 ⊥⊥ X2. We can
thus see the HSIC as a non-parametric measure of dependence between the variables X1 and
X2. HSIC can be used to construct a hypothesis test for the null hypothesis that X1 ⊥⊥ X2.



Chapter 3

Lasso and Sparsity

3.1 Motivation of sparsity

Consider the following (fixed-design) linear regression model

Y = Xβ0 + ε with E[ε] = 0.

where Y ∈ Rn, X ∈ Rn×p, β0 ∈ Rp, Cov(ε) = σ2
0 I. If X⊤X is invertible, we can compute the

MSPE of the OLS estimator as follows

1
nE
[
∥Xβ0 −Xβ̂OLS∥22

]
= 1

nE
[
(β0 − β̂OLS)⊤X⊤X(β0 − β̂OLS)

]
= 1

nE
[
trace

(
X(β0 − β̂OLS)(β0 − β̂OLS)⊤X⊤)]

= 1
n trace

(
E
[
(β0 − β̂OLS)(β0 − β̂OLS)⊤

]
X⊤X

)
= 1

n trace
(
Var

(
β̂OLS

)
X⊤X

)
= 1

n trace
(
σ2
0(X

⊤X)−1X⊤X
)

= p
nσ

2
0 .

Here, we used the cyclic property and linearity of the trace. This shows that the MSPE of the
OLS estimator depends on the number of parameters that need to be estimated. As shown in
Section 2.3.1 (Theorem 2.14 and (2.3.4)), the MSPE for the ridge regression estimator (i.e., kernel
ridge regression with linear kernel) has a similar form. In high-dimensional settings, where p is
large such a dependence on p is however problematic.

What happens if we know that most of the coordinates in β0 are equal to zero?

To formalize this question, we define

S0 := {k ∈ {1, . . . , p} | βk
0 ̸= 0}

and assume that s := |S0| is much smaller than p. Moreover, for all β ∈ Rp define ∥β∥0 :=
∣∣{k ∈

{1, . . . , p} | βk ̸= 0}
∣∣ that counts the non-zero entries of β.1 Intuitively, if we would know the set

S0 we could simply apply the OLS estimator using the predictors XS0 which would lead to an
MSPE of s

nσ
2
0 which again would be small.

A naive way of extending this idea if S0 is unknown is to use the best subset selection estimator,
which is defined by

β̂BSS := argmin
β∈Fsparse

∥Y −Xβ∥22,

1The function ∥·∥0 is not actually a norm because it is not homogeneous (i.e., ∥cβ∥0 ̸= c∥β∥0 for c > 0).

35
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where Fsparse := {β ∈ Rp | ∥β∥0 ≤ s}. It is possible to show with high probability that

1
n∥Xβ0 −Xβ̂BSS∥22 ≤ inf

β∈Fsparse

1
n∥Xβ0 −Xβ∥22 + σ2

0
s
n log(pes ), (3.1.1)

where e is Euler’s number. A derivation of this bound is given in Wainwright [2019, Example 13.16].
In fact, it can even be shown that this is the minimax optimal rate for sparse linear regression
[Wainwright, 2019, see Example 15.16]. While the best subset selection estimator has many
desirable theoretical properties, it is only of limited practical use because it requires computation
of
(
p
s

)
OLS-estimators which is computationally infeasible even for relatively small p. In the

following section, we will introduce an estimator that achieves this optimal rate (under additional
assumptions) and is computationally efficient.

3.2 Lasso estimator
Instead of using the best subset selection estimator directly, we attempt to approximate it. To
this end, define for all q ∈ (0,∞) the ℓq-norm2 ∥·∥q for all β ∈ Rp by

∥β∥q :=

 p∑
j=1

|β|q
 1

q

.

Instead of the best subset selection estimator, we can now consider all ℓq–norm estimators of the
form

β̂q,s := argmin
β∈Rp:∥β∥q≤s

∥Y −Xβ∥22.

Here β̂0,s corresponds to the best subset selection estimator, if we let ∥·∥0 be defined as in the
previous section. The optimization problem is convex (and hence relatively simple) whenever the
s-balls {β ∈ Rp | ∥β∥q ≤ s} are convex, which is the case if and only if q ≥ 1.

This motivates using q = 1, which can be seen as the closest convex relaxation of the best
subset selection estimator. Expressed in terms of the dual optimization problem3, the estimator
for q = 1 is given for a penalty parameter λ > 0 by

β̂L
λ := argmin

β∈Rp

1
2n∥Y −Xβ∥22 + λ∥β∥1. (3.2.1)

This estimator is called least absolute shrinkage and selection operator or Lasso for short. The
minimization in (3.2.1) does not necessarily have a unique solution. In those cases any solution to
the minimization is called a Lasso estimator or Lasso solution. The optimization in (3.2.1) can be
efficiently solved using coordinate sub-gradient descent. As we will see later, the Lasso estimator
achieves similar error rates as the best subset selection estimator. A key property of the ℓ1-penalty
is that it is actually able to set coordinates exactly equal to zero. This is particularly useful in the
context of variable selection.

3.2.1 Prediction error
Using concentration bounds, which we discuss in Section 3.3, it is possible to provide a bound on
the MSPE of the Lasso estimator, without making any assumptions on the design matrix X. The
formal result is given in following theorem.

2This is only a true norm if q ≥ 1, otherwise the functions are not subadditive.
3This terminology comes from Lagrangian optimization. The key idea is to switch between a constrained

optimization and a penalized optimization.
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Theorem 3.1 (Lasso slow rate).
Assume a fixed-design linear regression model

Y = Xβ0 + ε,

where ε is sub-Gaussiana with parameter σ2
0 and E[ε] = 0. For λ > 0, let β̂L

λ be a Lasso

estimator. Then, with probability at least 1− 2p
−
(

A2

2 −1
)

it holds that

1
n∥X(β0 − β̂L

λ )∥22 ≤ 4λ∥β0∥1,

where A := λ
σ0

√
n

log(p) .

aSub-Gaussian random variables are formally defined in Definition 3.3 and include Gaussian random vari-
ables as a special case.

Proof. Since β̂L
λ minimizes

1
2n∥Y −Xβ∥22 + λ∥β∥1

it holds that
1
2n ∥Y −Xβ̂L

λ∥22︸ ︷︷ ︸
=∥ε∥2

2+∥X(β0−β̂L
λ )∥2

2+2ε⊤X(β0−β̂L
λ)

+ λ∥β̂L
λ∥1 ≤ 1

2n ∥Y −Xβ0∥22︸ ︷︷ ︸
=∥ε∥2

2

+λ∥β0∥1.

Therefore, rearranging the terms and applying Hölder’s inequality leads to
1
2n∥X(β0 − β̂L

λ )∥22 ≤ 1
nε

⊤X(β̂L
λ − β0) + λ∥β0∥1 − λ∥β̂L

λ∥1
≤ 1

n∥ε
⊤X∥∞∥β0 − β̂L

λ ∥1 + λ∥β0∥1 − λ∥β̂L
λ∥1.

Now, let Ω := { 1
n∥ε

⊤X∥∞ ≤ λ}, then on Ω it holds that

1
2n∥X(β0 − β̂L

λ )∥22 ≤ λ∥β0 − β̂L
λ ∥1 + λ∥β0∥1 − λ∥β̂L

λ∥1 ≤ 2λ∥β0∥1.

To prove the theorem it remains to show that P(Ω) ≥ 1 − 2p−(
1
2A

2
n,p−1). This result requires

concentration inequalities and makes use of the assumption that ε is sub-Gaussian. The formal
result is given in Lemma 3.7 below.

Theorem 3.1 provides bounds on the MSPE for any fixed n and p. To understand the bound
better, observe that for all δ > 0, we can choose a constant c > 0 sufficiently large such that

1−2p
−
(

c2

2 −1
)
≥ 1−δ. Therefore, if we set λ = σ0

√
log(p)

n c the result implies that with probability
at least 1− δ it holds that

1
n∥X(β0 − β̂L

λ )∥22 ≤ 4σ0

√
log(p)

n
A∥β0∥1. (3.2.2)

This bound is small (and hence useful) whenever log(p)/n is sufficiently small. Due to the log-
arithm, this can be small even if p is substantially larger than n. In contrast to the classical
asymptotic setting in which one only considers n to increase, bounds of the form given in (3.2.2)
allow us to consider an asymptotic regime in which both n and p tend to infinity. From this
perspective, Theorem 3.1 proves that the Lasso estimator remains consistent also in this type of
asymptotic regime as long as

√
log(p)/n converges to zero.

It is interesting to compare the bound (3.2.2) with the rate achieved by the best subset selection
estimator given in (3.1.1). While the Lasso MSPE can be bounded with a bound of the order√

log(p)/n, the minimax-optimal rate in the sparse setting achieved by the best subset selection
estimator is given by log(p)/n and hence slightly better. Under additional assumptions on the
design matrix X it is possible to show that the Lasso can also achieve this rate, which is sometimes
called the Lasso fast-rate.
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3.3 Basic concentration bounds

In the analysis of statistical estimators, it is often required to control the tail behavior of random
variables. For example, in the proof of the central limit theorem in its simplest form, one assumes
that the random variables have finite variance in order to ensure that convergence holds.

In this section, we explore some basic concentration bounds that ensure that random variables
with well-behaved moments concentrate close to their mean with high probability.

3.3.1 Markov-type inequalities

The building block for a whole array of concentration bounds is Markov’s inequality, which is
stated in the following theorem.

Theorem 3.2 (Markov’s inequality).
Given a non-negative random variable X it holds for all t ∈ (0,∞) that

P(X ≥ t) ≤ E[X]

t
.

Proof. Starting from the expectation of X (and assuming E[X] < ∞) we get that

E[X] = E[X1{X<t}] + E[X1{X≥t}] ≥ E[X1{X<t}] + tE[1{X≥t}] ≥ tP(X ≥ t).

Dividing by t proves the result. For the case that E[X] = ∞ the result holds trivially, which
completes the proof of Theorem 3.2.

For any non-negative random variable with finite expectation, Markov’s inequality implies that
the probability of X being larger than t decays linearly as t grows. This can be improved, given
that the random variable additionally has finite moments of higher order. For example, if X is a
random variable with finite second moment, then we can apply Markov’s inequality to (X−E[X])2

and t2 to get Chebyshev’s inequality which states for all t ∈ (0,∞) that

P(|X − E[X]| ≥ t) ≤ Var(X)

t2
.

In this case, large deviations from the mean decay at a rate of t2. The same argument can be used
in the case where the k-th absolute centered moment E[|X − E[X]|k] is finite. This implies that
for all t ∈ (0,∞) it holds that

P(|X − E[X]| ≥ t) ≤ E[|X − E[X]|k]
tk

.

A further way of exploiting finite higher moments, is to use the moment generating function

ΨX(α) := E[eα(X−µ)],

where µ := E[X]. This function has the following properties

• it always exists at α = 0 and ΨX(0) = 1,

• it may not exist for all α (or in fact for any α ̸= 0)

• Ψ
(k)
X (0) = E[(X − µ)k] (if it exists in an open neighborhood of 0) and

• for X ∼ N (µ, σ2
0) the moment generating function is given by Ψ(α) = eα

2 σ2
0
2 .
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Assume X has a moment generating function that exists for all α ∈ [0, c]. Using Markov’s inequal-
ity we get for all α ∈ [0, c] and t ∈ (0,∞) that

P(X − µ ≥ t) = P(eα(X−µ) ≥ eαt) ≤ E[eα(X−µ)]

eαt
=

Ψ(α)

eαt
.

Since, the inequality holds for all α ∈ [0, c], we can choose it to make the bound as tight as possible.
This leads to Chernoff’s bound, which states for all t ∈ (0,∞) that

P(X − µ ≥ t) ≤ inf
α∈[0,c]

E[eα(X−µ)]

eαt
. (3.3.1)

3.3.2 Sub-Gaussian bounds
As we saw in the previous section, it is possible to use both higher-order moments and the moment
generating function of a random variable to derive bounds on how slow the tail of its distribution
can decay. The intuition is that the more finite moments a random variable has, the faster its
tails decay.

The Gaussian distribution is known to have finite moments of arbitrary degree and hence has
fast-decaying tails. The following definition characterizes a class of random variables that have at
least the same rate of decay in the tails as a Gaussian random variable.

Definition 3.3 (Sub-Gaussian).
A random variable X with mean µ is sub-Gaussian with parameter σ > 0 if for all α ∈ R it
holds that

ΨX(α) = E[eα(X−µ)] ≤ e
α2

2 σ2

.

The upper bound corresponds to the moment generating function of a Gaussian random variable
with variance σ2. Hence, a Gaussian random variable X ∼ N (0, σ2) is trivially sub-Gaussian with
parameter σ. Using Chernoff’s bound (3.3.1) on a sub-Gaussian random variable leads to the
sub-Gaussian deviation bound.

Proposition 3.4 (Sub-Gaussian deviation bound).
Let X be sub-Gaussian with parameter σ and mean µ, then it holds for all t ∈ (0,∞) that

P(|X − µ| ≥ t) ≤ 2 exp(− t2

2σ2 ).

Proof. Using Chernoff’s bound (3.3.1) and the definition of a sub-Gaussian random variable leads
for all t ∈ (0,∞) to

P(X − µ ≥ t) ≤ inf
α∈[0,∞)

E[eα(X−µ)]

eαt
≤ inf

α∈[0,∞)
exp(α

2

2 σ2 − αt) = exp(− t2

2σ2 ),

where we used that the infimum is attained at α = t/σ2. Moreover, we can apply the same
argument to −X since it is also sub-Gaussian with parameter σ, to get the same upper bound for
(µ−X). Finally, combining both we get

P(|X − µ| ≥ t) ≤ P(X − µ ≥ t) + P(µ−X ≥ t) ≤ 2 exp(− t2

2σ2 ),

which completes the proof of Proposition 3.4.

Example 3.5 (Sub-Gaussian random variables).

• Rademacher random variables: If X is a Rademacher random variable, i.e., X ∈ {−1, 1}
with P(X = 1) = P(X = −1) = 0.5, then it is sub-Gaussian with parameter σ = 1.
A proof is given in the exercises (Assignment 2, exercise 1).
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• Bounded random variables: If X is a random variable such that −∞ < a ≤ X ≤ b < ∞,
then X is sub-Gaussian with parameter σ = b−a

2 .

A proof is given in the exercises (Week 5, exercise 2). Sometimes this result is also called
Hoeffding’s lemma.

• Sums of random variables: If X and Y are sub-Gaussian (and not necessarily independent)
with parameters σX and σY , respectively, then X+Y is sub-Gaussian with parameter (σX +
σY ).

Proposition 3.6 (Hoeffding’s bound).
Let W1, . . . ,Wn be independent mean zero random variables that are sub-Gaussian with
parameter σi, respectively. Then, for all γ ∈ Rn it holds that

n∑
i=1

γiWi

is sub-Gaussian with parameter (
∑n

i=1 γ
2
i σ

2
i )

1/2.

Proof. Using the independence of W1, . . . ,Wn and the definition of a sub-Gaussian random variable
we get that

E
[
exp

(
α

n∑
i=1

γiWi

)]
=

n∏
i=1

E
[
exp

(
αγiWi

)]
≤

n∏
i=1

exp
(α2γ2

i

2
σ2
)
= exp

(α2

2

n∑
i=1

γ2
i σ

2
)
,

which completes the proof of Proposition 3.6.

Based on this result, we can prove that the max-norm of the weighted average of a sequence
of n sub-Gaussian random variables concentrates around zero as n increases, which is the missing
result we required in the proof of Theorem 3.1 above.

Lemma 3.7 (Concentration bound for Lasso).
Let X ∈ Rn×p be a fixed (non-random) matrix with ∥Xj∥22 =

∑n
i=1(X

j
i )

2 = n and ε =
(ε1, . . . , εn)

⊤ a vector of independent, mean-zero and sub-Gaussian random variables with
parameter σ. Let A = λ

σ

√
n

log(p) , then

P( 1n∥X
⊤ε∥∞ > λ) ≤ 2p−(

1
2A

2−1).

Proof. First, use a union bound to get that

P( 1n∥X
⊤ε∥∞ > λ) = P

 ⋃
j∈{1,...,p}

{ 1
n |ε

⊤Xj | > λ}

 ≤
p∑

j=1

P( 1n |ε
⊤Xj | > λ).

Next, by Proposition 3.6 it holds that 1
nε

⊤Xj is sub-Gaussian with parameter σ/n∥Xj∥2 = σ/
√
n.

Hence, using the sub-Gaussian deviation bound (Proposition 3.4) and the definition of λ, it holds
that

p∑
j=1

P( 1n |ε
⊤Xj | > λ) ≤ 2p exp

(
−λ2 n

2σ2

)
= 2p−(

1
2A

2−1),

which completes the proof of Proposition 3.7.
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3.4 Outlook: Extended theory
The results discussed in this chapter only scratch the surface of how sparsity can be used to analyze
high-dimensional data. In the following we discuss how the theory for Lasso can be extended.

Two immediate questions, that have not yet been answered are (i) whether the rate in Theo-
rem 3.1 can be improved and (ii) whether the Lasso estimator can be used for variable selection,
that is, whether it can recover the true set of active variables S0.

(i) Lasso fast rate (and random-design): As discussed previously, the upper bound for the best-
subset-selector is of order s log(p)

n which in the high-dimensional regime is smaller than the

bound of order ∥β0∥1
√

log(p)
n from Theorem 3.1. This begs the questions, whether the bound

in Theorem 3.1 can be improved. With further assumptions on the design matrix X this is
indeed possible, the result is known as the Lasso fast-rate (in contrast to the slow-rate given

in Theorem 3.1). It states that for λ = A
√

log(p)
n , with A > 0 constant, it holds with high

probability that
1
n∥X(β0 − β̂L

λ )∥22 ≤ Cσ2
0
s log(p)

n , (3.4.1)

for some constant C > 0. The formal result and proof can be found in [Wainwright, 2019,
Theorem 7.20]. In contrast to Theorem 3.1 the proof of this result uses assumptions on
design matrix X. These assumptions on X can be shown to hold with high probability if X
is for example multivariate Gaussian (random-design) [Wainwright, 2019, Theorem 7.16].

(ii) Lasso for variable selection: In some applications the target of interest is the set of active
variables S0. One of the advantages of Lasso, over ridge regression, is that the ℓ1-penalty is
capable of setting some of the coordinates in the estimator β̂L

λ exactly to zero. A potential
estimator for S0 is therefore given by

Ŝ := {j ∈ {1, . . . , p} | (β̂L
λ )

j ̸= 0}.

It turns out that this is indeed a consistent estimator of S0 under additional assumptions on
the design matrix. Details can be found in Wainwright [2019, Chapter 7.5].
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Chapter 4

Double Machine Learning

In this chapter, we consider a method for semiparametric inference with the aim of estimating a
parameter θ0 and constructing confidence intervals in the presence of a high-dimensional nuisance
parameter η0. These types of problems have a long history in statistics and have recently become
popular in combination with modern machine learning techniques. We follow the double machine
learning approach given in Chernozhukov et al. [2018].

4.1 Motivating example - Partially linear model
To illustrate the type of problems and the need for advanced methods, we start with a partially
linear model. Specifically, let θ0 ∈ R and g0,m0 ∈ F ⊆ {f | f : Rp → R}, where F is a fixed
function class.1 We consider a random vector Z = (D,X, Y ) ∈ R× Rp × R which satisfies

Y = Dθ0 + g0(X) + U

D = m0(X) + V,
(4.1.1)

with E[U |X,D] = 0 and E[V |X] = 0. This is called a partially linear model because only the
parameter of interest θ0 is assumed to enter the assignment of Y linearly. It is important that in
this model U and V are allowed to be dependent. Given n i.i.d. observations Z1, . . . , Zn of Z our
goal is to perform inference (potentially also beyond estimation, e.g., by constructing confidence
intervals) on the parameter θ0.

Example 4.1 (Treatment effect in the presence of confounding). Assume we are interested in
estimating the effect of a specific type of sleeping pill on the quality of sleep. We have access to
data consisting of n patients. For each patient i ∈ {1, . . . , n}, the following variables are recorded:

• Di ∈ {0, 1} is a treatment indicator with Di = 1 if the patient was treated with the drug and
Di = 0 otherwise.

• Yi ∈ R is a score measuring the quality of sleep, with large values corresponding to good and
small to bad sleep.

• Xi ∈ Rp are p different patient characteristics (e.g., age, sex, etc.).

This data can be modeled by the partially linear model given in (4.1.1). It may help to think about
this model as a sequential scheme with which the data is generated as follows: First, the patient
characteristics Xi are drawn, then depending on the characteristics the treatment Di is set and
depending on the treatment and characteristics the sleep quality Yi is drawn. In that case, it can
be argued using the language of causality that the treatment effect of the sleeping pill corresponds
to θ0, see Remark 4.2. An obvious goal in this example is to estimate θ0 and determine whether
it is significantly larger than zero.

1We actually do not require that g0 and m0 are from the same function space F , we only make this assumption
to ease notation.

43
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X

D Y

Figure 4.1: Directed causal graphical model for Example 4.1. Arrows correspond to direct causal
effects.

Remark 4.2 (Causality). Causal models provide a mathematical language to describe, in a rig-
orous way, what is meant by a treatment effect. They go beyond standard statistical models, which
only model a fixed data generating process, by additionally modeling the distributions of certain
(mechanistic) changes (commonly called interventions) to the data generating process.

The causal effect of the sleeping pill on the quality of sleep, given in Example 4.1, can be
formally expressed using Pearl’s do-notation [Pearl, 2009] as

τD→Y := E[Yi|do(Di = 1)]− E[Yi|do(Di = 0)].

The “do” in this notation indicates that the value of the treatment has been set (or intervened) to
a specific value. This is different from conditioning:

For example, assume that Xj indicates whether a patient lives next to an airport. Now,
if all people next to an airport sleep badly and therefore take the sleeping pill and all
patients that do not live next to an airport sleep well and do not take the pills it can
happen that

E[Yi|Di = 1]− E[Yi|Di = 0] < 0 < E[Yi|do(Di = 1)]− E[Yi|do(Di = 0)].

That is, looking at the conditional expectations could lead to the mistaken conclusion
that the sleeping pill worsens patients’ sleep, while in fact it improves sleep quality.

Causal models are often visualized using directed graphical models, in the case of Example 4.1 the
corresponding graph is given in Figure 4.1. The causal details are not important for this course.
The key point is that given the partially linear model and additional causal assumptions (such as
no unobserved confounding), it holds that the causal treatment effect τD→Y is equal to θ0.

A partially linear model, while substantially more general than a linear model, still restricts
the set of possible data generating distributions P. One can avoid such structural assumptions
and simply define relevant parameters of interest, that under additional causal assumptions as in
Remark 4.2, may still correspond to interpretable quantities. For example, without assuming a
partially linear model one might consider the parameter of interest

θA := E[E[Y |D = 1, X]− E[Y |D = 0, X]] or θA := E
[

∂
∂wE[Y |D = w,X]

∣∣
w=D

]
, (4.1.2)

depending on whether D is binary or continuous, respectively. In both cases the parameter of
interest is well-defined under only mild conditions on the support of D and sufficient regularity of
(d, x) 7→ E[Y |D = d,X = x]. Further distribution-free parameters of interest that are considered
in the literature are

θB := E
[
Cov(Y,D|X)

Var(D|X)

]
= E

[
E[(Y − E[Y |X])(D − E[D|X])|X]

E[(D − E[D|X])2|X]

]
(4.1.3)

and
θC :=

E[Cov(Y,D|X)]

E[Var(D|X)]
=

E[(Y − E[Y |X])(D − E[D|X)]

E[(D − E[D|X])2]
. (4.1.4)

Both θB and θC can be seen as best linear approximations of a partially linear model to the
nonparametric conditional (d, x) 7→ E[Y |D = d,X = x]. This is made precise in Appendix B.1.
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Importantly, all parameters θA, θB and θC are equal to θ0 if a partially linear model as in (4.1.1)
is assumed. They, however, differ on more general models and it is an interesting question to ask
which parameter one should work with in that case. From a causal perspective, θA is likely the
most relevant, as it can be interpreted as an average causal treatment effect. However, in terms of
estimation the parameter θC turns out to be easiest to estimate. θB is interesting as it is arguably
easier to interpret than θC and but might still be easier to estimate than θA. For the remainder
of this section, we, however, assume the partially linear model is correctly specified. In that case,
all of the above parameters correspond to θ0 and we only need to focus on estimating θ0.

4.1.1 Estimating conditional expectations
There is a close connection between conditional expectations, projections, minimizers of the
squared error loss and regressions. More formally, let (X,Y ) ∈ X ×R be a random vector where X
is a measurable space and Y has finite second moment.2 Let (Ω,A,P) denote the underlying prob-
ability space, L2(Ω,A,P) the Hilbert space of square integrable real-valued random variables and
σ(X) ⊆ A the sigma-algebra generated by X. Then, using that L2(Ω, σ(X),P) ⊆ L2(Ω,A,P) is a
closed subspace, the Hilbert-space projection theorem [e.g., Luenberger, 1997, Section 3, Theorem
2] implies that there is a unique minimizer Z∗ ∈ L2(Ω, σ(X),P) to

inf
Z∈L2(Ω,σ(X),P)

E
[
(Y − Z)2

]
.

Furthermore, the minimizer Z∗ satisfies that Y − Z∗ is orthogonal to L2(Ω, σ(X),P), that is, for
all Z ∈ L2(Ω, σ(X),P) it holds that E[Z(Y − Z∗)] = 0. This property implies that Z∗ is an
orthogonal projection of Y on X in the space L2(Ω,A,P).

The conditional expectation E[Y |X], in the case that Y has finite second moments, is defined
as the unique minimizer Z∗. Using that for any random variable Z ∈ L2(Ω, σ(X),P) there exists
a function g ∈ G := {g : X → R | g is measurable and E[g(X)2] < ∞} such that g(X) = Z almost
surely, we get that E[Y |X] satisfies that

inf
g∈G

E
[
(Y − g(X))2

]
= E

[
(Y − E[Y |X])2

]
(4.1.5)

and for all g ∈ G that
E[g(X)(Y − E[Y |X])] = 0.

This characterization of the conditional expectation, connects regression to estimating conditional
expectations as follows. Consider a regression model

Y = f0(X) + ε with E[ε|X] = 0,

where f0 ∈ F with F ⊆ G a fixed function class. Then, by the linearity of the conditional
expectation it immediately holds that E[Y |X] = f0(X) almost surely and by (4.1.5) also that

f0(X) = E[Y |X] = argmin
f∈F

E
[
(Y − f(X))2

]
.

Therefore, minimizing the mean squared error over a sufficiently large function class F corresponds
to estimating the conditional expectation. The field of machine learning has made substantial
progress on creating efficient and powerful tools to solve such optimization tasks with minimal
assumptions on the function classes F (see Section 2). These methods, however, rely on various
complex regularization techniques and are in general hard to analyze theoretically.

4.1.2 Challenges when estimating θ0

Our goal is to estimate and construct confidence intervals for the linear parameter θ0 in the
partially linear model (4.1.1). While this may appear straight-forward at first glance, there are
two pitfalls that need to be accounted for.

2Finite second moment is not required for the conditional expectation to exist but it makes its interpretation as
a projection easier to understand.
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Confounding bias A first attempt at estimating θ0 might be to perform a linear regression of
Y on D. However, the population OLS θOLS (i.e., the best linear approximation to E[Y |D]) is
equal to

θOLS =
E[Y D]

E[D2]
= θ0 +

E[g0(X)D]

E[D2]
,

which is not equal to θ0 if E[g0(X)D] ̸= 0. Therefore, a simple OLS estimator in general leads to
a biased estimate of θ0. This type of bias is called confounding bias, because it stems from the
fact that X and D are dependent (or confounded). This type of bias is a central object of study
in causality. There are essentially three fundamental ways of accounting for it; (i) adjustment,
which only uses the equation for Y in (4.1.1), (ii) inverse probability weighting, which uses only the
equation for D in (4.1.1) and (iii) doubly robust methods which combine both previous approaches.
The approach introduced below falls into the third category (but we do not discuss this further). In
the partially linear model consistent estimates can be easily constructed using the plug-in principle
and one of the equivalent representations discussed after Remark 4.2. For example, a first option
is to use the expressions (4.1.2). Formally, let f̂ be an estimate of the conditional expectation
(d, x) 7→ E[Y |D = d,X = x], then this leads to

θ̂plug-in1 =
1

n

n∑
i=1

(f̂(1, Xi)− f̂(0, Xi)) or θ̂plug-in1 =
1

n

n∑
i=1

∂
∂d f̂(Di, Xi) (4.1.6)

depending on whether D is binary and continuous. A second option of constructing an estimator
is to use the expression in (4.1.4) and similarly construct the plug-in estimator, now based on an
estimate ℓ̂ for the conditional expectation x 7→ E[Y |X = x] and an estimate m̂ for the conditional
expectation x 7→ E[D|X = x], given by

θ̂plug-in2 =

∑n
i=1(Yi − ℓ̂(Xi))(Di − m̂(Xi))∑n

i=1(Di − m̂(Xi))2
.

It is possible to construct a similar plug-in version of (4.1.3) as well. Finally, a third option is
to directly use the partially linear model (4.1.1) and observing that the conditional expectation
(d, x) 7→ E[Y |D = d,X = x] is the almost everywhere unique minimizer of E[(Y − f(D,X))2] over
f ∈ Gplm, where

Gplm := {f : R× Rp → R | ∃θ ∈ R, g ∈ F s.t. ∀d ∈ R, x ∈ Rp : f(d, x) = dθ + g(x)}.

Therefore, optimizing the MSPE over this class directly results in an estimate of θ0. In practice,
one might consider a penalized estimator of the form

(θ̂plug-in3 , ĝ) = argmin
(θ,g)∈R×F

n∑
i=1

(Yi −Diθ − g(Xi))
2 + λ∥g∥2F . (4.1.7)

All proposals can be shown to lead to consistent estimators of θ0, under relatively mild assumptions
on the model and estimating procedure.

Regularization and overfitting bias While the plug-in estimators proposed above asymp-
totically account for the confounding bias, we may also be interested in constructing confidence
intervals (e.g., to test whether the parameter θ0 is significantly larger than zero). To this end, it
would be desirable for the estimators to be asymptotically normal, i.e., that

√
n(θ̂ − θ0)

d−→ N (0, σ2).

Unfortunately, this is only achievable for the plug-in estimators if the conditional expectations
involved in the above estimators, i.e., x 7→ E[Y |X = x], x 7→ E[D|X = x] and (d, x) 7→ E[Y |D =
d,X = x], can be estimated with parametric procedures. However, whenever we need to employ
more advanced machine learning procedures such as random forests, kernel ridge estimators, neural
networks or Lasso, the resulting plug-in estimators are no longer asymptotically normal. This is
due to two separate but entangled types of bias:
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(i) Regularization bias: Machine learning methods are able to estimate flexible functions by
regularizing in various ways (e.g., kernel-ridge regression or Lasso). This adds a bias to the
estimates of the involved conditional expectations which then spills over to the asymptotic
behavior of a naive estimator of θ0.

(ii) Overfitting bias: A further, but separate, source of bias is incurred if the same data is used
twice. For example, in (4.1.6), if the same data is used for estimating f̂ and computing the
average, then the evaluations f̂(Xi) are too optimistic leading to an overfitting bias.

The field of semiparametric statistics deals with both types of biases. Roughly speaking there are
three frameworks: one-step correction, targeted learning and DML. Kennedy [2022] provides a
good overview of the frameworks with a focus on the one-step correction. Here, we focus on DML
and show that it addresses both sources of bias: For (i) it uses an orthogonalization technique to
estimate θ0 and for (ii) it uses a type of sample splitting called cross-fitting. These are detailed in
the following section.

4.1.3 DML for the partially linear model

Let us formalize the discussion by introducing for each sample size n ∈ N, a machine learning
estimator η̂n, which estimates some nuisance functions η0 based on i.i.d. observations Z1, . . . , Zn.
We make no assumptions on the type of machine learning estimator, for example, it could be
based on random forests, kernel ridge estimators, neural networks or Lasso. DML now proposes a
three step procedure that first uses η̂n to estimate η0 which is then used to estimate θ0 efficiently.
A simplified version is given by the following step-wise procedure:

(i) Split the data into two data sets I1 and I2 (for simplicity both of size n).

(ii) Estimate η0 using only the data in I1 resulting in the estimate η̂n.

(iii) On the remaining data I2, estimate θ0 as the solution θ̂ to the equation

1

n

∑
i∈I2

Ψ(Zi, θ̂, η̂n) = 0, (4.1.8)

where Ψ is an appropriately chosen score function of the data and the parameters θ and η.

The two ingredients that make this procedure work are the sample splitting and the appropriately
chosen function Ψ that ensures that the estimation of θ0 is separated from the estimation of η0.

Constructing the score function

There are several ways one can construct potential score functions Ψ. For example, one could use
the estimating equation resulting from a risk minimization or MLE type estimator. However, as
we will see below, not every score Ψ – even if it leads to a consistent estimator – can be used for
DML.

Let us start by considering the plug-in estimators θ̂plug-in2 and θ̂plug-in3 . For each of these, we
can construct a corresponding score function that would result in that estimate. More specifically,
for θ̂plug-in2 we can choose the score function ΨPO defined for all (d, x, y) ∈ Rd+2, θ ∈ R and
(ℓ,m) ∈ F2 by

ΨPO((d, x, y), θ, (ℓ,m)) := (y − ℓ(x))(d−m(x))− θ(d−m(x))2.

Similarly, for θ̂plug-in3 if we have an estimator ĝ, we can choose the score function Ψ̃VC defined for
all (d, x, y) ∈ Rd+2, θ ∈ R and g ∈ F by

Ψ̃VC((d, x, y), θ, g) := (y − θd− g(x))d.
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As should be clear from the corresponding plug-in estimators, each depends on a different nui-
sance function that needs to be estimated. An immediate question is whether applying the DML
procedure based on sample splitting above is sufficient to ensure that the resulting estimate is
asymptotically normal. As illustrated empirically by the following numerical example only the
DML approach based on the score ΨPO is asymptotically normal while the one based on Ψ̃VC

remains asymptotically biased.

Example 4.3 (Numerical example of partially linear model). Define the functions m0 : R → R
and g0 : R → R for all x ∈ R by

m0(x) = sin(x) and g0(x) = sin(x).

We then consider the partially linear model given by

Y = Dθ0 + g0(X) + U

D = m0(X) + V,

with X ∼ Unif(−1, 1), U ∼ Unif(−0.25, 0.25) and V ∼ Unif(−0.25, 0.25) independent. Assume
now we observe n i.i.d. samples (Y1, X1, D1), . . . , (Yn, Xn, Dn) from this model. We now apply
the estimators described at the beginning of Section 4.1.3 based on the scores Ψ̃VC and ΨPO,
respectively, and using random forests to estimate the nuisance functions. To empirically assess
whether this estimator is asymptotically normal, we perform 500 repetitions of this experiment and
record the estimate in each repetition. The resulting plot is shown in Figure 4.2 (top and bottom
left) for n = 50 and n = 500. The estimates based on Ψ̃VC do not converge to a normal distribution,
indicating that it is not an asymptotically normal estimator around the true parameter. In contrast
the estimates based on the score ΨPO indeed appear to be asymptotically normal (see Figure 4.2
(right)).

Why does the estimator based on Ψ̃VC fail to be asymptotically normal?

Let’s look at the estimator corresponding to Ψ̃VC in more detail. Given that ĝn has already
been estimated (e.g., using (4.1.7)), the estimate corresponding to score Ψ̃VC is equal to

1
n

∑n
i=1(Yi − ĝn(Xi))Di

1
n

∑n
i=1 D

2
i

. (4.1.9)

This corresponds to linearly regressing the residuals Yi − ĝn(Xi) onto Di. Now, expanding the
numerator in (4.1.9) by using the partially linear model and multiplying it with

√
n, we get that

√
n
1

n

n∑
i=1

(Yi − ĝn(Xi))Di =
1√
n

n∑
i=1

UiDi + θ0
1√
n

n∑
i=1

D2
i +

1√
n

n∑
i=1

(g0(Xi)− ĝn(Xi))Di.

By the central limit theorem the first two terms converge, under mild assumptions, to a normal
distribution with fixed variance and mean equal to θ0E[D2]. Hence, intuitively, for the

√
n-scaled

estimator to be asymptotically unbiased the last term in this expression needs to converge to zero
(or at least to a mean zero Gaussian distribution). If Di is independent of Xi then this follows
directly from the central limit theorem, however if not this is no longer guaranteed. Instead one
could assume that ĝn converges at a rate that is faster than

√
n which, in general, is unachievable,

in particular for non-parametric or high-dimensional models (see for example Theorem 2.17 applied
with the Sobolev kernel).

This intuitive argument suggest that it might be possible to avoid the problem if one can
reduce the dependence between Xi and Di. We can try to make use of this and replace Di in the
estimate with Di − m̂n(Xi), where m̂n is an estimate of m0. In that case the estimate turns into

1
n

∑n
i=1(Yi − ĝn(Xi))(Di − m̂n(Xi))
1
n

∑n
i=1(Di − m̂n(Xi))Di

, (4.1.10)
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Figure 4.2: Histogram of estimates of θ0 for 500 repetitions from the same data generating model.
In red the density of a standard normal distribution corresponding to the theoretically correct
asymptotic distribution of the DML estimator. The estimator based on Ψ̃VC is clearly biased
while the one based on ΨPO is asymptotically normal and unbiased.
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where the denominator was adjusted so the estimator remains consistent. Performing the same
expansion as above now results in a problematic term of the form

1√
n

n∑
i=1

(g0(Xi)− ĝn(Xi))(m0(Xi)− m̂n(Xi)).

In order for this term to converge to zero it is however already sufficient if both ĝn and m̂n converge
at a rate faster than n−1/4, which in contrast to the

√
n-rate is achievable also for more complex

machine learning procedures. The updated estimator in (4.1.10) corresponds to the score function
ΨVC defined for all (d, x, y) ∈ Rd+2, θ ∈ R and (m, g) ∈ F2 by

ΨVC((d, x, y), θ, (m, g)) := (y − θd− g(x))(d−m(x)).

In the following we will focus on the DML estimator based on this score. The DML theory is
however much more general and allows us to precisely define what property a score needs to
satisfy in order for the procedure to be asymptotically linear (see Definition 4.9 below). The score
ΨPO, as expected from the empirical experiments in Example 4.3, also satisfies this property and
is indeed asymptotically normal. The corresponding estimator is sometimes called partialling-out
estimator.

Chernozhukov estimator

We now concentrate on the DML estimator based on ΨVC which we call the Chernozukov DML
estimator (or VC-DML estimator for short) as it was originally proposed by Chernozhukov et al.
[2018]. A formal definition of this estimator is given in the following definition.

Definition 4.4 (VC-DML estimator for the partially linear model).
Let ĝn and m̂n be machine learning estimators for g0 and m0, respectively. For all n ∈ N,
split the observation indices into K disjoint sets I1, . . . , IK such that I1∪· · ·∪IK = {1, . . . , n}
and |Ik| ≈ n/K. Furthermore, for all n ∈ N and all k ∈ {1, . . . ,K} define

m̂k
n := m̂|Ic

k|((Zi)i∈Ic
k
) and ĝkn := ĝ|Ic

k|((Zi)i∈Ic
k
),

where Ick = {1, . . . , n} \ Ik and Zi = (Di, Xi, Yi). Moreover, for k ∈ {1, . . . ,K}, let θ̂kn be the
solution to

1

|Ik|
∑
i∈Ik

(Di − m̂k
n(Xi))(Yi −Diθ̂

k
n − ĝkn(Xi)) = 0. (4.1.11)

Then the VC-DML estimator θ̂DML
n is defined by

θ̂DML
n :=

1

K

K∑
k=1

θ̂kn.

The procedure that splits the data into K subsets and constructs K estimates that are finally
average is called cross-fitting and is more sample efficient than simply sample splitting while still
preserving the asymptotic normality.

Asymptotic normality of the Chernozukov estimator

The following theorem shows that if the partially linear model is sufficiently well-behaved and if
the machine learning estimators have a sufficiently fast rate of convergence, the VC-DML estimator
is indeed asymptotically normal.
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Theorem 4.5 (Asymptotic normality of DML for partially linear model).
Assume that the partially linear model in (4.1.1) satisfies E[V 2U2] < ∞, E[D2] < ∞, E[V 2] >
0 and that E[U2|X] and E[V 2|X] are almost surely bounded. Moreover, assume for all n ∈ N
that the machine learning estimators m̂n and ĝn trained on n i.i.d. observations Z1, . . . , Zn

are L2-consistent and satisfy for X independent of the training observations that

lim
n→∞

√
n · E[(m0(X)− m̂n(X))2]

1
2E[(g0(X)− ĝn(X))2]

1
2 = 0.

Then, for σ2 := E[V 2]−2E[V 2U2] it holds that

√
n
(
θ̂DML
n − θ0

)
d−→ N (0, σ2) as n → ∞.

Proof. For notational simplicity, we assume the full sample size is nK and that each split I1, . . . , IK
contains exactly n observations.

We start by expanding (4.1.11) to see that θ̂kn satisfies

θ̂kn

(
1

n

∑
i∈Ik

(Di − m̂k
n(Xi))Di

)
=
∑
i∈Ik

(Di − m̂k
n(Xi))(Yi − ĝkn(Xi)).

Then, defining Jn := 1
n

∑
i∈Ik

(Di − m̂k
n(Xi))Di, it holds that on the event Ωn = {|Jn| > 0}, the

estimator θ̂kn exists and is given by

θ̂kn =

(
1

n

∑
i∈Ik

(Di − m̂k
n(Xi))Di

)−1(
1

n

∑
i∈Ik

(Di − m̂k
n(Xi))(Yi − ĝkn(Xi))

)
.

Below, we show that Jn converges to E[V 2] in probability, which further implies that limn→∞ P(Ωn) =
1. We can therefore assume that the event Ωn holds for the remainder of the proof.

Next, we decompose the scaled estimation error using the structure of the partially linear model
as follows

√
n(θ̂kn − θ0)

=
√
nJ−1

n

[
1

n

∑
i∈Ik

(Di − m̂k
n(Xi))(Yi − ĝkn(Xi))− Jnθ0

]

=
√
nJ−1

n

[
1

n

∑
i∈Ik

(Di − m̂k
n(Xi))Ui +

1

n

∑
i∈Ik

(Di − m̂k
n(Xi))(g0(Xi)− ĝkn(Xi))

]

=
√
nJ−1

n

[
1

n

∑
i∈Ik

(m0(Xi)− m̂k
n(Xi))Ui +

1

n

∑
i∈Ik

ViUi

+
1

n

∑
i∈Ik

(m0(Xi)− m̂k
n(Xi))(g0(Xi)− ĝkn(Xi)) +

1

n

∑
i∈Ik

Vi(g0(Xi)− ĝkn(Xi))

]
= J−1

n a∗n + J−1
n b∗n + J−1

n c∗n + J−1
n d∗n, (4.1.12)

where we defined

• a∗n = 1√
n

∑
i∈Ik

ViUi,

• b∗n = 1√
n

∑
i∈Ik

(m0(Xi)− m̂k
n(Xi))(g0(Xi)− ĝkn(Xi)),

• c∗n = 1√
n

∑
i∈Ik

Ui(m0(Xi)− m̂k
n(Xi)),
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• d∗n = 1√
n

∑
i∈Ik

Vi(g0(Xi)− ĝkn(Xi)).

We will now analyze the convergence of the terms Jn, b∗n, c∗n and d∗n separately. More precisely,
we will show that Jn

P−→ E[V 2], b∗n
P−→ 0, c∗n

P−→ 0 and d∗n
P−→ 0.

Term Jn: We want to show that this term converges in probability to E[V 2]. To see this, fix
ε > 0 and use the partially linear model together with the triangle inequality and the pigeonhole
principle to get that

P(|Jn − E[V 2]| > ε)

= P(| 1n
∑

i∈Ik
(Di − m̂k

n(Xi))Di − E[V 2]| > ε)

= P(| 1n
∑

i∈Ik
(m0(Xi)− m̂k

n(Xi))Di +
1
n

∑
i∈Ik

ViDi − E[V 2]| > ε)

≤ P(| 1n
∑

i∈Ik
(m0(Xi)− m̂k

n(Xi))Di| > ε/2) + P(| 1n
∑

i∈Ik
ViDi − E[V 2]| > ε/2). (4.1.13)

Next, we consider the two summands separately. For the first summand in (4.1.13), use the triangle
and Cauchy-Schwarz inequalities to get that

E

[∣∣∣ 1
n

∑
i∈Ik

(m0(Xi)− m̂k
n(Xi))Di

∣∣∣] ≤ 1

n

∑
i∈Ik

E
[
|(m0(Xi)− m̂k

n(Xi))Di|
]

≤ E
[
(m0(X)− m̂k

n(X))2
] 1

2 E
[
D2
] 1

2 .

By our assumptions this implies that limn→∞ E
[
| 1n
∑

i∈Ik
(m0(Xi)− m̂k

n(Xi))Di|
]
= 0 and hence

this term also converges to zero in probability, i.e., limn→∞ P(| 1n
∑

i∈Ik
(m0(Xi) − m̂k

n(Xi))Di| >
ε) = 0. For the second summand in (4.1.13), the weak law of large numbers implies that
1
n

∑
i∈Ik

ViDi converges in probability to E[ViDi] = E[Vim0(Xi) + ViVi] = E[V 2
i ] (using the par-

tially linear model). Hence, we have shown that

lim
n→∞

P(|Jn − E[V 2]| > ε) = 0,

or equivalently Jn converges in probability to E[V 2].
Term b∗n: Applying the triangle and Cauchy-Schwarz inequality, we get that

E[|b∗n|] ≤
1√
n

∑
i∈Ik

E[|(m0(Xi)− m̂k
n(Xi))(g0(Xi)− ĝkn(Xi))|]

≤
√
n · E[(m0(X)− m̂k

n(X))2]
1
2E[(g0(X)− ĝkn(X))2]

1
2 .

Hence, by assumption b∗n, converges to zero.
Terms c∗n and d∗n: The method for showing that each term converges to zero uses the same
arguments. Here, we only show it for c∗n. First, using standard properties of the conditional
expectation, independence of the samples in Ik and Ick and the assumption E[U |X,D] = 0, we get
that

E[c∗n] = E

[
1√
n

∑
i∈Ik

Ui(m0(Xi)− m̂k
n(Xi))

]

= E

[
1√
n

∑
i∈Ik

E[Ui(m0(Xi)− m̂k
n(Xi))|Xi, (Zℓ)ℓ∈Ic

k
]

]

= E

[
1√
n

∑
i∈Ik

E[Ui|Xi](m0(Xi)− m̂k
n(Xi))

]
= 0. (4.1.14)



4.1. MOTIVATING EXAMPLE - PARTIALLY LINEAR MODEL 53

Next, using independence of the samples and that Ik and Ick are disjoint sets of observations, we
get

E[(c∗n)2] =
1

n

∑
i,j∈Ik

E
[
Ui(m0(Xi)− m̂k

n(Xi))Uj(m0(Xj)− m̂k
n(Xj))

]
=

1

n

∑
i ̸=j∈Ik

E
[
E
[
Ui(m0(Xi)− m̂k

n(Xi))|(Zℓ)ℓ∈Ic
k

]
E
[
Uj(m0(Xj)− m̂k

n(Xj))|(Zℓ)ℓ∈Ic
k

]]
+

1

n

∑
i∈Ik

E
[
U2
i (m0(Xi)− m̂k

n(Xi))
2
]

=
1

n

∑
i ̸=j∈Ik

E
[
E
[
Ui(m0(Xi)− m̂k

n(Xi))|Xi, (Zℓ)ℓ∈Ic
k

]]
· E
[
E
[
Uj(m0(Xj)− m̂k

n(Xj))|Xi, (Zℓ)ℓ∈Ic
k

]]
+

1

n

∑
i∈Ik

E
[
E
[
U2
i (m0(Xi)− m̂k

n(Xi))
2|Xi, (Zℓ)ℓ∈Ic

k

]]
=

1

n

∑
i ̸=j∈Ik

E
[
E [Ui|Xi] (m0(Xi)− m̂k

n(Xi))
]
E
[
E [Uj |Xi] (m0(Xj)− m̂k

n(Xj))
]

+
1

n

∑
i∈Ik

E
[
E
[
U2
i |Xi

]
(m0(Xi)− m̂k

n(Xi))
2
]

≤ C · E
[
(m0(X)− m̂k

n(X))2
]
, (4.1.15)

where C > 0 is a constant that comes from the assumption that E[U2|X] is bounded. Finally,
using (4.1.14) and (4.1.15), we can apply Chebyshev’s inequality to get for all ε > 0 that

lim sup
n→∞

P(|c∗n| ≥ ε) ≤ lim sup
n→∞

E[(c∗n)2]
ε2

≤ lim sup
n→∞

C · E
[
(m0(X)− m̂k

n(X))2
]

ε2
= 0.

Hence, we have shown that c∗n converges to zero in probability.
The arguments above hold for all θ̂kn, so using the definition of θ̂DML

n , we get that

√
Kn

(
θ̂DML
n − θ0

)
=

√
Kn

(
1

K

K∑
k=1

θ̂kn − θ0

)

=
1√
K

K∑
k=1

√
n
(
θ̂kn − θ0

)
=

1√
K

K∑
k=1

[
J−1
n

1√
n

∑
i∈Ik

UiVi + oP(1)

]

=
1

E[V 2]

1√
Kn

Kn∑
i=1

UiVi + oP(1),

where we used the continuous mapping theorem to combine the convergence in probability of
the different terms. Furthermore, defining σ2 := E[V 2]−2E[V 2U2] and using the assumption
E[V 2U2] < ∞, we can apply the central limit theorem to get that

√
Kn

(
θ̂DML
n − θ0

)
d−→ N (0, σ2).

This completes the proof of Theorem 4.5.
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4.1.4 Inference in sparse high-dimensional linear models
A useful feature of DML is that it can be used to construct confidence intervals in sparse high-
dimensional linear models. Keep in mind that this is a non-trivial task because fitting sparse
models (e.g., using Lasso) requires regularization (see Chapter 3) and regularization leads to
biased estimates.

Assume we observe (X1, Y1), . . . , (Xn, Yn) ∈ Rp ×R i.i.d. observations from a (random-design)
sparse high-dimensional linear model given by

Y = β⊤
0 X + U, with E[U |X] = 0.

Our goal is to construct confidence intervals for the parameter βj
0 for a fixed coordinate j ∈

{1, . . . , p}. In order to apply DML, we assume that the covariates X additionally satisfy a linear
model. Formally, assume the samples (X1, Y1), . . . , (Xn, Yn) satisfy the joint high-dimensional
sparse linear model

Y = β⊤
0 X + U

X = B0X + V,
and

E[U |X] = 0

E[V j |X−j ] = 0 ∀j ∈ {1, . . . , p}
(4.1.16)

where β0 ∈ Rp and B0 ∈ Rp×p with zeros on the diagonal and I−B0 invertible.3 To be able to
estimate the parameters sufficiently well we assume that the model is sparse in the sense that for
all j ∈ {1, . . . , p} it holds that

sj0 := max
(
∥β−j

0 ∥0, ∥(B0)
−j
j ∥0

)
is sufficiently small for all j ∈ {1, . . . , p}. For a fixed coordinate j ∈ {1, . . . , p} we can use (4.1.16)
to construct a partially linear model as in (4.1.1) as follows

Y = Xjβj
0 + γ⊤

0 X−j + U

Xj = α⊤
0 X

−j + V j ,
(4.1.17)

where γ0 := β−j
0 and α0 := (B0)

−j
j . Here, the nuisance parameter is η0 = (γ0, α0), which can be

estimated consistently and with known rates using Lasso. Hence, denote by α̂j
n the Lasso estimator

for the regression of Xj on X−j (i.e., an estimator of α0) and by γ̂j
n all but the last coordinate

of a Lasso estimator for the regression of Y on (Xj , X−j) (i.e., an estimator for γ0). Denote by
β̂DML,j
n the DML estimator defined in Definition 4.4 where m̂n = α̂j

n(·) and ĝn = γ̂j
n(·).

Given that the Lasso estimators achieve the fast rate we can use the asymptotic normality
given in Theorem 4.5 to construct confidence intervals. Formally, we get the following corollary.

Corollary 4.6 (Confidence intervals for sparse high-dimensional linear models).
Assume we are given n i.i.d. samples (X1, Y1), . . . , (Xn, Yn) ∈ Rp×R from the high-dimensional
sparse linear model (4.1.16) with U and V bounded random variables and E[V V ⊤] strictly
positive definite. Fix j ∈ {1, . . . , p} and assume that α̂j

n and γ̂j
n achieve the Lasso fast rate

(3.4.1), then it holds for all q ∈ (0, 1) that

lim
n→∞

P
(
βj
0 ∈

[
β̂DML,j
n − σj√

n
Φ−1(1− q

2 ), β̂
DML,j
n +

σj√
n
Φ−1(1− q

2 )
])

= 1− q, (4.1.18)

where σ2
j = E[(V j)2]−2E[(V j)2U2] and Φ−1 is the quantile function of the standard normal

distribution.

Proof. Fix j ∈ {1, . . . , p} such that α̂j
n and γ̂j

n achieve the Lasso fast rate. We now want to apply
Theorem 4.5. To do so, we need to check (1) that all moment assumptions are satisfied and (2)
the regression estimators α̂j

n and γ̂j
n converge sufficiently fast.

3Here, the superscript −j denotes the selection of all but the j-th index.
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• For (1), observe that since we assumed that U and V are bounded it immediately holds
that E[U2(V j)2] < ∞ and E[U2|X−j ] and E[(V j)2|X−j ] are bounded. Furthermore, by
X = (I−B0)

−1V we get that X is also bounded and hence E[(Xj)2] < ∞. Lastly, since
E[V V ⊤] is strictly positive definite, we get that E[(V j)2] = e⊤j E[V V ⊤]e⊤j > 0.

• For (2), we use that the α̂j
n and γ̂j

n achieve the fast rate, i.e., with high-probability it holds
for a constant C > 0 that

1
n∥X

−j(α0 − α̂j
n)∥22 ≤ Csj0

log(p)
n , and 1

n∥X
−j(γ0 − γ̂j

n)∥22 ≤ Csj0
log(p)

n , (4.1.19)

as n → ∞. Since X is assumed to be bounded, this implies together with the dominated
convergence theorem that

E[(α⊤
0 X

−j
i − (α̂j

n)
⊤X−j

i )2] = O( 1n ) and E[(γ⊤
0 X−j

i − (γ̂j
n)

⊤X−j
i )2] = O( 1n ).

Hence, both estimators are L2-consistent and we additionally get that

lim
n→∞

√
nE[(α⊤

0 X
−j
i − α̂nX

−j
i )2]

1
2E[(γ⊤

0 X−j
i − γ̂nX

−j
i )2]

1
2 = 0. (4.1.20)

Therefore, all assumptions of Theorem 4.5 are satisfied and it holds that

√
n
(
β̂DML,j
n − βj

0

)
d−→ N (0, σ2

j ) as n → ∞,

for σj :=
√
E[(V j)2U2]/E[(V j)2]. Using the definition of convergence in distribution implies

(4.1.18), which completes the proof of Corollary 4.6.

Remark 4.7 (High-dimensional regime with growing p). You might have noticed that we kept p
fixed in the statement and proof of Corollary 4.6. In the asymptotic regime where p is fixed and
only n goes to infinity, it can be shown that the OLS adjustment estimator (i.e., regressing Y on
X and picking the j-th coordinate) also satisfies (4.1.18). To analyze high-dimensional estimators
one therefore generally considers an asymptotic regime in which p = pn is allowed to grow with n.
For example, one can consider the asymptotic regime in which

lim
n→∞

log(pn)√
n

= 0.

Given the Lasso fast rate (4.1.19), we then still have sufficiently fast convergence to ensure (4.1.20).
This intuitive argument can be made precise, but this requires modifying Theorem 4.5 to allow

for the distributions to change with n. More specifically, one needs to look at triangular sampling
schemes where for each n there is a new sample X

(n)
1 , . . . , X

(n)
n of size n. A sufficiently strong

theorem is given in Appendix B.2 (it also estimates σ0).

Remark 4.8 (Bounded noise is not necessary). In Corollary 4.6 we assumed that U and V are
bounded. This is not necessary and can be weakened. We mainly use the assumption to be able to
convert convergence in probability into L2-convergence. However, the L2-convergence assumptions
on the machine learning estimators in Theorem 4.5 are in fact also not strictly necessary. You
can verify in the proof that the same statements hold with the weaker notion of convergence in
probability.

4.2 Beyond the partially linear model
The DML framework applies beyond the partially linear model and can be phrased in terms of
more general semiparametric inference problems. To get an idea of the generality, consider the
following setting. Let Z be the observation space and Z a random variable on Z and assume we
observe n i.i.d. copies Z1, . . . , Zn of Z. Furthermore, we use the following notational convention.
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• Parameter space: Let Θ × Λ be the parameter space with θ ∈ Θ the parameter of interest
and η ∈ Λ a nuisance parameter. Furthermore, assume that Θ ⊆ Rp is an open and convex
subset.

• Stochastic model: For all (θ, η) ∈ Θ×Λ there exists a distribution Pθ,η on Z and there exists
a fixed parameter (θ0, η0) ∈ Θ× Λ such that Z ∼ Pθ0,η0 .

• Score function: Let Ψ : Z ×Θ× Λ → Rp be a measurable function which satisfies

E[Ψ(Z, θ, η0)] = 0 ⇔ θ = θ0.

Our goal is to estimate θ0 with an asymptotically normal estimator. Similar to the partially linear
model, we will estimate the nuisance parameter using some machine learning method and then
adjust for the regularization and overfitting bias. For this to work, we need to choose the correct
score function which we then use to estimate θ0. Specifically, we need this score function to satisfy
what is called Neyman orthogonality. Intuitively, this means that the score function should be
insensitive to small changes in the nuisance parameter. Formally, we require the following property.

Definition 4.9 (Neyman orthogonality).
A score function Ψ : Z × Θ × Λ → Rp is said to satisfy the Neyman orthogonality condition
at the true parameter (θ0, η0) with respect to a set Λ̃ ⊆ Λ if η 7→ E[Ψ(Z, θ0, η)] is Gateaux
differentiable at η0 and it holds for all η ∈ Λ̃ that

d
drE[Ψ(Z, θ0, η0 + r(η − η0)]

∣∣∣
r=0

= 0.

The score function used in the DML estimator in Definition 4.4 for the partially linear model is
given by

Ψ((D,X, Y ), θ, (m, g)) = (D −m(X))(Y −Dθ − g(X)).

It can be shown (exercise) that this score function is indeed Neyman orthogonal at the true
parameters θ0,m0, g0. The DML estimator for the general semiparametric case with a fixed score
function Ψ generalizes Definition 4.4 in the following way.

Definition 4.10 (General DML estimator).
Let η̂n be machine learning estimators for the nuisance parameter η0. For all n ∈ N, split the
observation indices into K disjoint sets I1, . . . , IK such that I1 ∪ · · · ∪ IK = {1, . . . , n} and
|Ik| ≈ n/K. Furthermore, for all n ∈ N and all k ∈ {1, . . . ,K} define

η̂kn := η̂|Ic
k|((Zi)i∈Ic

k
)

where Ick = {1, . . . , n} \ Ik. Then, for k ∈ {1, . . . ,K}, let θ̂kn be the solution to

1

|Ik|
∑
i∈Ik

Ψ(Zi, (θ̂
k
n, η̂k)) = 0. (4.2.1)

Then the DML estimator θ̂DML
n is given by

θ̂DML
n =

1

K

K∑
k=1

θ̂kn.

Under some additional assumptions on the score function and the machine learning procedures this
procedure will result in an asymptotically normal estimator. Most importantly, we require that
the machine learning procedures converge sufficiently fast and that the score function is Neyman
orthogonal. The formal result requires quite a few regularity conditions and goes beyond the scope
of this course.
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Appendix A

Background

A.1 Singular value decomposition

Let X ∈ Rn×p and m := min(n, p). Then the matrix X can be decomposed into orthogonal and
diagonal matrices using the singular value decomposition (SVD). The SVD comes in two flavours.

• full SVD:
X = UDV ⊤,

where U ∈ Rn×n, V ∈ Rp×p have orthonormal columns and D ∈ Rn×p is diagonal with
d1 ≥ · · · ≥ dm ≥ 0, where dj is the j-th diagonal element of D.

• thin SVD:
X = UDV ⊤,

where U ∈ Rn×m, V ∈ Rp×m have orthonormal columns and D ∈ Rm×m is diagonal with
d1 ≥ · · · ≥ dm ≥ 0, where dj is the j-th diagonal element of D.

A.1.1 Connection to principle component analysis

There is a close connection between SVD and principal component analysis (PCA). To see this
consider the first principal component (PC), which is given by

Xw∗, where w∗ := argmax
w∈Rp: ∥w∥2=1

V̂ar(Xw).

Assuming X is a mean zero random variable, the variance is estimated by V̂ar(Xw) = 1
nw

⊤X⊤Xw.
Hence, using the SVD we can bound the estimated variance from above as follows

V̂ar(Xw) = 1
nw

⊤X⊤Xw

= 1
nw

⊤V D2V ⊤w

= 1
na

⊤D2a

= 1
n

p∑
j=1

a2jd
2
j

≤ 1
nd

2
1

p∑
j=1

a2j

= 1
nd

2
1, (A.1.1)
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where a := V ⊤w and we used that ∥w∥ = 1 in the last step. Next, observe that V ⊤V1 =
(1, 0, . . . , 0)⊤ implies that

V̂ar(XV1) =
1
nd1. (A.1.2)

Therefore, (A.1.1) and (A.1.2) together imply that the first PC is given by

XV1 = U1d1.

A similar arguments shows that XV2 = U2d2, ..., XVp = Updp correspond to the remaining PCs.

A.2 Computational complexity
This section provides a rough overview of what to consider when assessing the computational
cost of statistical estimation procedures. In modern applications, with large amounts of data, the
computational cost is often a bottleneck and computational speed-ups are crucial. One can divide
the computational complexity of an algorithm into two main parts:

(1) The number of arithmetic operations the algorithms makes.

(2) The required memory to run the algorithm.

Arithmetic operations The number of arithmetic operations can generally be computed by
dividing the algorithm up into basic operations (e.g., addition, multiplication, taking logarithms,
etc.) and then counting how many of these operations are required. For matrix algebra the
following computational costs are often helpful:

• Matrix multiplication: Let A ∈ Rn×m and B ∈ Rm×p be two matrices, then the number of
basic operations needed to compute the product AB (without using a specialized algorithm)
is of order O(nmp). To see this, observe that computing (AB)i,j =

∑m
k=1 AikBkj requires

2m computations (m additions and m multiplications) and hence the full matrix can be
computed in 2mnp basic operations.

• Matrix inversion: Let A ∈ Rp×p be an invertible matrix, then the inverse A−1 can be
computed in O(p3) operations using Gauss-eliminations.

• Singular value decomposition: Let X ∈ Rn×p be a matrix, then computing the SVD X =
UDV ⊤ requires O(npm) operations using the QR-algorithm, where m = min(n, p).

For certain operations faster algorithms exist, for example two square matrices with dimension p
can be multiplied with O(p2.807) operations using the Strassen algorithm, but for our purposes the
above computational costs are sufficiently accurate to provide an approximation of the runtime of
a baseline implementation.

Memory The memory usage can be approximated by counting all the doubles (or floats, de-
pending on which precision is used) that need to be saved while the algorithm is executed. For
a matrix X ∈ Rn×p this means that we need to save np doubles or floats. One double uses 64
bits which corresponds to 8 bytes, while one float uses 32 bits which corresponds to 4 bytes. The
memory usage in bytes is therefore given by

#doubles · 8bytes +#floats · 4bytes.



Appendix B

Additional results

B.1 Partially linear model - alternative targets of interest
The following result is taken from Lundborg and Pfister [2023][Proposition S1].

Proposition B.1 (Best approximating partially linear model).
Let (D,X, Y ) ∈ R× Rp × R with finite second moments. Then,

θC :=
E[Cov(Y,D|X)]

E[Var(D|X)]
and hC : x 7→ E[Y |X = x]− θE[D|X = x]

minimize
E
[
(E[Y |D,X]− θD − h(X))2

]
over all θ ∈ R and all measurable functions h : Rp → R.

B.2 Uniform asymptotic normality of DML
The result in Theorem 4.5 is actually not sufficiently strong for hypothesis testing for two reasons:
(i) It requires to know the exact variance σ2. If one would estimate it the results may no longer
be valid. (ii) It only holds pointwise for a fixed distribution, which does not allow for uniform
control of the type-I error rate and additionally means that it cannot be directly applied to derive
results as in Corollary 4.6. Fortunately, the result can be extended to fix both problems. For this
we use the variance estimator given by

σ̂2 := Ĵ−2 1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

(
(Yi − θ̂DMLDi − ĝkn(Xi))(Di − m̂k

n(Xi)
)2

,

where

Ĵ :=
1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

Di(Di − m̂k
n(Xi)).

This estimator together with the VC-DML estimator is then uniform asymptotic normality in the
following sense.

Theorem B.2 (Uniform asymptotic normality of DML for partially linear model).
Let P denote a class of distributions over Z = (D,X, Y ) ∈ R× Rd × R satisfying a partially
linear model as in (4.1.1). Additionally, assume there exists δ, c > 0 such that
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• supP∈P max(EP [(V U)2+δ],EP [D
2],EP [V

2]) < ∞,

• supP∈P max(EP [U
2|X],EP [V

2|X]) is almost surely bounded and

• infP∈P EP [(V U)2] > c.

Moreover, assume for all n ∈ N that the machine learning estimators m̂n and ĝn trained on
n i.i.d. observations Z1, . . . , Zn are uniformly L2-consistent and satisfy for X independent of
the training observations that

lim
n→∞

sup
P∈P

√
nEP [(m0(X)− m̂n(X))2]

1
2EP [(g0(X)− ĝn(X))2]

1
2 = 0.

Let Φ denote the cumulative distribution function of the standard normal distribution. Then,
it holds that

lim
n→∞

sup
P∈P

sup
t∈R

∣∣∣PP

(√
n
σ̂

(
θ̂DML
n − θ0

)
≤ t
)
− Φ(t)

∣∣∣ = 0.

The proof of this result is similar to that of Theorem 4.5 but uses a uniform versions of Slustsky
theorem and the central limit theorem.
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