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Chapter 1

Introduction

The purpose of this thesis is to take a look at several available options for
constructing high order solvers for ordinary differential equations and study
their behaviour for small numbers of time steps (between 1 and 10 time
steps). We focus on the practical aspect of implementing these methods in a
way that allows the construction of methods with arbitrarily high orders. Of
course this is only theoretically possible due to computational complexity.
The implementations are in Matlab and all codes are directly included into
the thesis.

The paper has been divided into four main parts. The first three consider
three different types of methods: Taylor methods, Runge-Kutta methods and
extrapolation methods. These are not intended as self-contained introduc-
tions to these methods, but rather as short overviews giving the necessary
background required to be able to understand the implementations outlined.
The last chapter applies the methods to a few examples and intends to illus-
trate the behaviour of increasing orders of the different methods for small
numbers of time steps.

The following section outlines the mathematical setting that is used through-
out the rest of the thesis.

1.1 Setting

Throughout this paper let d ∈ N, t0 ∈ [0,∞), T ∈ (t0,∞), y0 ∈ Rd and
f ∈ C∞

(
Rd,Rd

)
and concentrate on ordinary differential equations (ODEs)

of the form {
y′(t) = f(y(t)), t ∈ [t0, T ]

y(t0) = y0.
(1.1)

1



CHAPTER 1. INTRODUCTION 2

Using the fundamental theorem of calculus any solution of the ODE (1.1)
also has to satisfy the following integral equation

y(t) = y0 +

∫ t

t0

f(y(s))ds, t ∈ [t0, T ]. (1.2)

Existence and uniqueness of solutions is guaranteed by the famous Picard–Lindelöf
theorem which can be found in any book on ordinary differential equations
(see, e.g., [8]).

The assumption that the right hand side f is infinitely often differentiable is
a lot more restrictive than necessary. However, the purpose of this paper is
only to illustrate high order numerical approximations and using this rather
basic setting allows us to circumvent many analytical details and therefore
allows us to focus on the fundamental ideas behind the methods.

Also observe that since f has no time dependence we often assume t0 = 0

as this has no effect on the theory.

1.2 Numerical approximations

In this section we introduce some standard notation related to numerical
approximations of ODEs. We follow [6] and also refer to this book for more
details.

Assume we are in the setting described in Section 1.1. We call 4 a grid on
[t0, T ] if it is a set of discrete times 4 := {t0, t1, . . . , tn} satisfying

t0 < t1 < · · · < tn = T. (1.3)

The idea behind numerical approximations of ODEs is to find a function
y4 : 4→ Rd such that

y4(t) ≈ y(t), for all t ∈ 4 (1.4)

where y is the exact solution of the ODE (1.1). A method that calculates
such an approximation y4 for all grids 4 on [t0, T ] is called a discretization
method. If a discretization method additionally fulfills that for all grids 4
on [t0, T ] the approximation y4 satisfies the two term recursion

(i) y4(t0) = y0,

(ii) y4(tj+1) = Ψ (tj+1 − tj , y4(tj)) for all j = 0, 1, . . . , n− 1

for some function Ψ : [0, T − t0]×Rd → Rd which is independent of 4, then
we call it a one-step method. The function Ψ is called discrete evolution. In
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view of this and using that in the setting of Section 1.1 the function f is in-
dependent of the time variable t, a one-step method is uniquely determined
by specifying Ψ (t, y) for all y ∈ Rd and for all t ∈ [t0, T ]. Therefore in order
to ease the notation we often write yh to represent Ψ (h, y0).



Chapter 2

Taylor methods

Taylor methods are an intuitive collection of one-step methods for solving
ordinary differential equations. They can be constructed for arbitrary orders
of convergence and play a crucial role in deriving the famous Runge-Kutta
methods. However, they have two severe drawbacks when it comes to prac-
tical applications.

(i) A Taylor method of order m requires all derivatives of the right hand
side up to order m− 1.

(ii) Taylor methods become complicated for higher orders, in particular for
multi-dimensional right hand sides.

Despite these issues and due to their intuitive construction, Taylor methods
are an important class of methods also in practise.

In the following sections we derive the general form of the m-th order Taylor
method. For more details see [6].

2.1 Deriving Taylor methods

The main idea behind Taylor methods is to iteratively apply the fundamen-
tal theorem of calculus and the chain rule to step by step achieve better
approximations of the solution y(t) around the value t0.

Starting with the integral form (1.2) and applying the fundamental theorem

4



CHAPTER 2. TAYLOR METHODS 5

of calculus to f(y(s)) inside the integral we get

y(t) = y0 +

∫ t

t0

f(y(s))ds

= y0 +

∫ t

t0

(
f(y(t0)) +

∫ s0

t0

f ′(y(s1))[y′(s1)]ds1

)
ds0

= y0 + (t− t0)f(y0) +

∫ t

t0

∫ s0

t0

f ′(y(s1))[f(y(s1))]ds1ds0 (2.1)

Set h := t− t0 and observe that due to the continuity of f ′ the integral term
is of order h2. We take the first part, which only depends on the initial value,
as the first order Taylor method (which corresponds to the famous explicit
Euler method)

yh = y0 + hf(y0) (2.2)

To keep the notation as simple as possible we make the following definitions.

Definition 2.1 (L-operator) Let d ∈ N and f ∈ C∞
(
Rd,Rd

)
. Then we denote

by Lf : C∞
(
Rd,Rd

)
→ C∞

(
Rd,Rd

)
the function with the property that for all

g ∈ C∞
(
Rd,Rd

)
, x ∈ Rd, it holds that

Lfg(x) = g′(x)[f(x)] (2.3)

and we call Lf the L-operator associated to the ODE (1.1).

Definition 2.2 (m-th L-operator) Let d,m ∈ N and f ∈ C∞
(
Rd,Rd

)
. Then we

denote by L(m)
f : C∞

(
Rd,Rd

)
→ C∞

(
Rd,Rd

)
the function with the property that

for all g ∈ C∞
(
Rd,Rd

)
it holds that

L
(m)
f g = Lmf g. (2.4)

and we call L(m)
f the m-th L-operator associated to the ODE (1.1).

The first three L-operators (x argument is left out) are given by

L
(1)
f f = f (1) [f ]

L
(2)
f f = f (2) [f, f ] + f (1)

[
f (1) [f ]

]
L

(3)
f f = f (3) [f, f, f ] + 3f (2)

[
f, f (1) [f ]

]
+ f (1)

[
f (2) [f, f ]

]
+ f (1)

[
f (1)

[
f (1) [f ]

]]
We can now express (2.1) using the L-operator and apply the fundamental
theorem of calculus once more to the term inside the integral.
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y(t) = y0 + hf(y0) +

∫ t

t0

∫ s0

t0

f ′(y(s1))[f(y(s1))]ds1ds0

= y0 + hf(y0) +

∫ t

t0

∫ s0

t0

(Lff)(y(s1))ds1ds0

= y0 + hf(y0) +

∫ t

t0

∫ s0

t0

(
Lff(y(t0)) +

∫ s1

t0

Lf
(
(Lff)(y(s2))

)
ds2

)
ds1ds0

= y0 + hf(y0) +
h2

2

(
L

(1)
f

)
f(y0) +

∫ t

t0

∫ s0

t0

∫ s1

t0

(
L

(2)
f f

)
(y(s2))ds2ds1ds0

Now the integral term is of order h3 and we take the second order Taylor
method as

yh = y0 + hf(y0) +
h2

2
L

(1)
f f(y0)

Continuing this process iteratively we end up with the general Taylor expan-
sion of the solution.

Theorem 2.3 (general Taylor expansion) Assume the setting in Section 1.1. Then
it holds for all h ∈ [0, T − t0] that

y(t0 + h) = y0 + hf(y0) + · · ·+ hm

m!
L

(m−1)
f f(y0)︸ ︷︷ ︸

Taylor approximation

+

∫ t0+h

t0

· · ·
∫ sm−1

t0

L
(m)
f f(y(sm))dsm · · · ds0︸ ︷︷ ︸

remainder term

Proof Follows immediately by induction from the considerations above. �

The remainder term can be estimated to be of order hm+1. This is done in
the following theorem.

Theorem 2.4 (remainder estimate) Assume the setting in Section 1.1. Then it
holds for all h ∈ [0, T − t0] that∥∥∥∥∫ T

t0

· · ·
∫ sm−1

t0

L
(m)
f f(y(sm))dsm · · · ds0

∥∥∥∥
Rn

≤ hm+1

(m+ 1)!
sup

s∈[t0,T ]

∥∥∥L(m)
f f(y(s))

∥∥∥
Rn

<∞

Proof Observe that L(m)
f f(y(sm)) is continuous and hence attains its supre-

mum on [t0, T ]. �
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We can therefore define the m-th order Taylor methods.

Definition 2.5 (m-th order Taylor method) Assume the setting in Section 1.1
and let h ∈ (0,∞). Then we define the Taylor method of order m by

yh = y0 + hf(y0) +
h2

2
L

(1)
f f(y0) + · · ·+ hm

m!
L

(m−1)
f f(y0)

Remark 2.6 Observe that Theorem 2.4 ensures that the m-th order Taylor method
indeed has order of convergence m.

If the right hand side is a one dimensional polynomial, it is possible to
implement the Taylor methods very efficiently using the internal polynomial
functions in Matlab. Such an implementation is given in Listing 2.1.

Listing 2.1: Matlab implemention of the Taylor methods for polynomial rhs

1

func t ion [ y_T ] = poly_ tay lor ( poly_rhs , T , y_0 , steps , order )
3 % poly_tay lor : Taylor method ODE−s o l v e r with a r b i r a r y order f o r

polynomial rhs
% INPUT

5 % poly_rhs : polynomial rhs given as vec tor
% T : f i n a l time

7 % y_0 : i n i t i a l value
% steps : number of time s teps

9 % order : order of ODE−s o l v e r
% OUTPUT

11 % y_T : approximated s o l u t i o n at time T

13 %% Ca l c u l a te required d e r i v a t e s
n=length ( poly_rhs ) −1;

15 mpl=2^( order −1) ∗ (n−1) +2;
polymat=zeros ( order , mpl ) ;

17 polymat ( 1 , ( mpl−n ) : mpl ) =poly_rhs ;
f o r k =2: order

19 cpd=2^(k−1) ∗ (n−1) +1;
temp=conv ( polyder ( polymat ( k−1 , : ) ) , polymat ( 1 , : ) ) ;

21 polymat ( k , ( mpl−cpd ) : mpl ) =temp ( length ( temp )−cpd : end ) ;
end

23 %% Apply Taylor method
h=T/steps ;

25 y_T=y_0 ;
increment_poly=sum( polymat .∗ repmat ( cumprod ( h∗ones ( order , 1 ) ) ./ cumprod

( ( 1 : ( order ) ) ’ ) , 1 , mpl ) , 1 ) ;
27 f o r k =1: s teps

y_T=y_T+polyval ( increment_poly , y_T ) ;
29 end

end

Implementing the Taylor methods for general right hand sides in Matlab is
more difficult and we need to
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(i) find an appropriate formalism that allows us to construct and generate
the L-operators of arbitrary order, and

(ii) find a way of dealing with high order derivatives of the right hand side
f .

The next two sections (Section 2.2 and Section 2.3) will deal with (i), while
we will discuss (ii) in Section 2.4.

2.2 Differential statements and structure vectors

As we have seen above, the L-operators become complicated very fast. In
order to be able to implement them in Matlab, we will make use of their
recursive structure and iteratively generate the next higher L-operator from
the previous one. In this section we introduce the notion of differential
structure vectors which capture the recursive structure of the individual
differential terms in the L-operators.

2.2.1 Differential structure vectors

One possibility to abstractly capture the structure of these differential terms
is to use rooted trees. This is also the standard approach in literature.
We will however use vectors (with special properties) as this allow a more
straightforward implementation in Matlab. The trade-off is that we loose
the intuitiveness of the rooted trees and mathematical rigour will lead to
somewhat tedious notation.

Definition 2.7 (sub vector) LetA ∈ {N,N0,Z}, k ∈ N, v ∈ Ak, l0 ∈ {0, 1, 2, . . . , k},
then a vector w ∈ Al0 (where A0 consists of the empty vector) is called sub vector
of v if there exists l1, l2 ∈ {0, 1, 2, . . . , k}, v(1) ∈ Al1 and v(2) ∈ Al2 such that
v = (v(1),w,v(2)).

Definition 2.8 (non-trivial sub vector) Let A ∈ {N,N0,Z}, k ∈ N, v ∈ Ak,
l0 ∈ {0, 1, 2, . . . , k}, then a sub vector w ∈ Al0 is called a non-trivial sub vector if
w is not the empty vector and w 6= v.

The following definition introduces the essential object of this section.

Definition 2.9 (differential structure vector (DSV)) Letm ∈ N and v = (v1, . . . , vm) ∈
Nm0 , then if m = 1 we call v a differential structure vector of length 1 (sometimes
trivial structure vector) if v = 0. Else if m ∈ {2, 3, . . . } we call v a differen-
tial structure vector of length m if there exists m1 . . . ,mv1 ∈ N such that for all
i ∈ {1, 2, . . . , v1} there exists v(i) ∈ Nmi

0 satisfying

(i) v =
(
v1,v

(1), . . . ,v(v1)
)
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(ii) for all i ∈ {1, 2, . . . , v1}: v(i) is a differential structure vector of length mi .

The tupel of sub vectors
(
v(1), . . . ,v(v1)

)
is called a recursive decomposition of v.

The following example illustrates this definition.

Example 2.10 Set v = (3, 2, 0, 0, 0, 1, 0) ∈ N7
0, then v is a DSV. To see this we let

m1 = 3, m2 = 1, m3 = 2, v(1) = (2, 0, 0), v(2) = 0 and v(3) = (1, 0). Clearly
v =

(
v1,v

(1), . . . ,v(v1)
)

hence it only remains to prove that v(1), v(2) and v(3) are
DSVs:

• v(2) is the trivial DSV.

• For v(1), observe that one can use the recursive decomposition (0, 0) to see
that v(1) is indeed a DSV.

• For v(3), observe that one can use the recursive decomposition (0) to see that
v(3) is indeed a DSV.

The recursive decomposition can be calculated in Matlab using the function
find_rec_decomp given in Listing 2.2, which outputs a vector containing the
indices of the first element of each sub vector of the recursive decomposition.

Listing 2.2: Matlab function for determining recursive decomposition of a DSV

1 func t ion [ ind ] = find_rec_decomp ( DSV )
% find_rec_decomp : c a l c u l a t e s the r e c u r s i v e decomposition of a DSV

3 % INPUT
% DSV: d i f f e r e n t i a l s t r u c t u r e vec tor

5 % OUTPUT
% ind : vec tor of length DSV( 1 ) conta in ing the l o c a t i o n of the f i r s t

element of each r e c u r s i v e decomposition as an index of DSV
7

ind=zeros ( 1 ,DSV( 1 ) ) ;
9 ind ( 1 ) =2;

f o r i =2:DSV( 1 )
11 l e v e l =1;

s tep=ind ( i −1) ;
13 while l e v e l >0

i f DSV( step ) ==0
15 l e v e l = l e v e l −1;

e l s e i f DSV( step ) >1
17 l e v e l = l e v e l +DSV( step ) −1;

end
19 s tep=step +1;

end
21 ind ( i ) =step ;

end
23 end
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Definition 2.11 (set of DSVs) We denote by

F := {v ∈ ∪m∈NNm0 : v is a DSV}

the set of all DSVs.

2.2.2 Differential statements

We can now use DSVs to define differential statements.

Definition 2.12 (differential statement (DS)) Let d ∈ N and let f ∈ C∞
(
Rd,Rd

)
.

Then denote by f (v) ∈ C∞
(
Rd,Rn

)
, v ∈ F the functions with the property that

f (0) = f and with the property that for every v ∈ F non-trivial DSV with recursive
decomposition

(
v(1), . . . ,v(v1)

)
it holds for all x ∈ Rd that

f (v)(x) = f (v1)(x)
[
f (v(1))(x), . . . , f (v(v1))(x)

]
. (2.5)

We call f (v) the differential statement (DS) of f associated to v.

In other words, we associate to any f ∈ C∞
(
Rd,Rd

)
and v ∈ F a differ-

ential statement (f (v)). The following definition makes this correspondence
explicit and will later ease the notation.

Definition 2.13 (correspondence map) Let d ∈ N. Then we denote by Φd :

F × C∞
(
Rd,Rd

)
→ C∞

(
Rd,Rd

)
the function with the property that for all

v ∈ F , f ∈ C∞
(
Rd,Rd

)
it holds that

Φd(v, f) = f (v) (2.6)

and Φd is called correspondence map.

The Matlab function correspondence_map (see Listing 2.3) implements the
functionality of the correspondence map. It takes a DSV and outputs the
differential statement associated to the DSV as a string.

Listing 2.3: Matlab implementation of the correspondence map

1 func t ion [ DS ] = correspondence_map ( DSV )
% correspondence_map : converts a DSV to a s t r i n g conta in ing the DS

3 % INPUT
% DSV: d i f f e r e n t i a l s t r u c t u r e vec tor

5 % OUTPUT
% DS : s t r i n g conta in ing the d i f f e r e n t i a l statement

7

i f length (DSV) >1
9 % decompose i n t o r e c u r s i v e decomposition

i n d _ s t a r t =find_rec_decomp (DSV) ;
11 ind_end =[ i n d _ s t a r t ( 2 : end ) −1, length (DSV) ] ;



CHAPTER 2. TAYLOR METHODS 11

n=length ( i n d _ s t a r t ) ;
13 % c o n s t r u c t the d i f f e r e n t i a l statement using a recurs ion

DS=[ ’D ’ , num2str (DSV( 1 ) ) , ’ ( x , [ ’ , correspondence_map (DSV( i n d _ s t a r t
( 1 ) : ind_end ( 1 ) ) ) ] ;

15 f o r i =2:n
DS=[DS , ’ , ’ , correspondence_map (DSV( i n d _ s t a r t ( i ) : ind_end ( i ) ) )

] ;
17 end

DS=[DS , ’ ] ) ’ ] ;
19 e l s e

DS= ’ f v a l ’ ;
21 end

end

2.2.3 Differentiating DSVs

In this section we will see that given v ∈ F applying the L-operator to the
DS f (v) results in the sum of DSs associated to a set of new DSVs derived
from v by simple vector transformations. In some sense this extends the
notion of differentiation to DSVs.

Definition 2.14 (L(m)-operators) Let m ∈ N and let i ∈ {1, . . . ,m}. Then we
denote by L(m)

i : Nm0 → Nm+1
0 the function with the property that for all v ∈ Nm0

it holds
L(m)
i (v) = (v1, . . . , vi−1, vi + 1, 0, vi+1, . . . , vm). (2.7)

Lemma 2.15 Let m ∈ N, i ∈ {1, . . . ,m}. Then for all DSVs v = (v1, . . . , vm ∈
Nm0 the vector L(m)

i (v) is a DSV.

Proof We prove Lemma 2.15 by induction on the length m. In the base case
m = 1 it holds that i = 1 and v = 0. Hence L(1)

1 (0) = (1, 0) which is again a
DSV. For the induction step we assume that the statement holds for all DSVs
of length smaller or equal to m.f Let v ∈ Nm+1

0 DSV with recursive decom-
position

(
v(1), . . . ,v(v1)

)
. Then for i = 1 observe that

(
0,v(1), . . . ,v(v1)

)
is

a recursive decomposition of L(m)
1 (v) = (v1 + 1, 0,v(1), . . . ,v(v1)) and there-

fore L(m)
1 (v) is a DSV. For i ∈ {2, . . . ,m+ 1}, let j, l ∈ {2, . . . ,m+ 1} be such

that v(l)
j is the i-th component of v and let ml be the length of v(l). By the

induction hypothesis L(ml)
j (v(l)) is DSV and since(

v(1), . . . ,v(j−1),L(ml)
j

(
v(l)
)
,v(j+1), . . . ,v(v1)

)
is a recursive decomposition of L(m)

i (v) which completes the proof of Lemma
2.15. �
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The following proposition gives the desired connection between the L-operator
(Definition 2.1) and the L(m)-operators (Definition 2.14).

Proposition 2.16 Let d,m ∈ N, f ∈ C∞
(
Rd,Rd

)
and v ∈ Nm0 ∩ F . Then it

holds that

Lf (Φd(v, f)) =
m∑
i=1

Φd

(
L(m)
i (v), f

)
. (2.8)

Proof We prove Proposition 2.16 by induction on the length m. In the base
case m = 1 it holds that v = 0 and hence

LfΦd(v, f) = Lff = f (1)[f ] = Φd ((1, 0), f) = Φd

(
L(1)

1 (v), f
)
.

For the induction step assume (2.8) holds for all DSVs of length smaller or
equal tom. Let v ∈ Nm+1

0 be DSV with recursive decomposition
(
v(1), . . . ,v(v1)

)
and for all i ∈ {1, . . . , v1} denote by mi the length of v(i). Then using the
product rule and the induction hypothesis we get

LfΦd(v, f) = Lff
(v1)
[
Φd

(
v(1), f

)
, . . . ,Φd

(
v(v1), f

)]
= f (v1+1)

[
f,Φd

(
v(1), f

)
, . . . ,Φd

(
v(v1), f

)]
+

m∑
i=1

f (v1)
[
. . . , LfΦd

(
v(i), f

)
, . . .

]
= f (v1+1)

[
Φd(0, f),Φd

(
v(1), f

)
, . . . ,Φd

(
v(v1), f

)]
+

m∑
i=1

f (v1)

. . . , mi∑
j=1

Φd

(
L(mi)
j

(
v(i)
)
, f
)
, . . .


= Φd

(
L(m)

1 (v), f
)

+

m∑
i=1

mi∑
j=1

f (v1)
[
. . . ,Φd

(
L(mi)
j

(
v(i)
)
, f
)
, . . .

]
= Φd

(
L(m)

1 (v), f
)

+

m∑
i=1

mi∑
j=1

Φd

((
v1,v

(1), . . . ,L(mi)
j

(
v(i)
)
, . . . ,v(v1)

)
, f
)

= Φd

(
L(m)

1 (v), f
)

+

m∑
i=1

mi∑
j=1

Φd

(
Lm1+m1+···+mi−1+j(v), f

)
= Φd

(
L(m)

1 (v), f
)

+

m∑
i=2

Φd (Lmi (v), f)

=

m∑
i=1

Φd (Lmi (v), f) .

This completes the proof of Proposition 2.16. �
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Hence given v ∈ F and applying the L-operator to the differential statement
f (v) results in the sum of the differential statements associated to the DSVs
L(m)

1 (v), . . . ,L(m)
m (v). This means we can interpret "differentiating" a DSV of

length m as calculating the DSVs L(m)
1 (v), . . . ,L(m)

m (v). The Matlab function
diff_DSV given in Listing 2.4 implements this functionality.

Listing 2.4: Matlab function for "differentiating" DSVs

1 func t ion [ DSVs ] = diff_DSV ( DSV )
% diff_DSV : " d i f f e r e n t i a t e s " DSV

3 % INPUT
% DSV: d i f f e r e n t i a l s t r u c t u r e vec tor

5 % OUTPUT
% DSVs : matrix conta in ing the d i f f e r e n t i a t e d DSVs as columns

7

m=length (DSV) ;
9 DSVs=zeros (m+1 ,m) ;

f o r i =1:m
11 DSVs ( : , i ) =[DSV( 1 : i −1) ;DSV( i ) + 1 ; 0 ;DSV( i +1: end ) ] ;

end
13 end

2.2.4 Normalized DSVs

Observe, for every v ∈ F with recursive decomposition
(
v(1), . . . ,v(v1)

)
, ev-

ery d ∈ N and every f ∈ C∞
(
Rd,Rd

)
, the DS f (v) is a v1-linear form and

hence does not depend on the ordering of terms f (v(1)), . . . , f (v(v1)). There-
fore different DSVs can correspond to the same differential statement. In
other words, the correspondence map Φd is not injective.

In this section we introduce a method to normalize DSVs that allows us to
identify which DSVs correspond to the same DSs.

Definition 2.17 (dictionary order) We denote by 4 the relation on (F ,F) with
the property that for all v,w ∈ F it holds that v 4 w if and only if v = w, or
length(v) < length(w), or length(v) = length(w) =: m and ∃k ∈ {0, 1, . . . m−
1} : v1 = w1, . . . , vk = wk, vk+1 < wk+1. We call 4 the dictionary order.

Proposition 2.18 The dictionary order 4 is a total order on F .

Proof The properties antisymmetry, transitivity and totality can be check
directly. �

We can use the dictionary order to define normalized DSVs. This is done in
the next definition.

Definition 2.19 (normalized DSV) Let m ∈ N and v = (v1, . . . , vm) ∈ F be a
DSV with recursive decomposition

(
v(1), . . . ,v(v1)

)
. Then v is called a normalized

DSV if one of the following is fulfilled
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(i) v has length 1

(ii) v(1) 4 v(2) 4 · · · 4 v(v1) and for all i ∈ {1, . . . , v1} it holds that v(i) is a
normalized DSV.

Definition 2.20 (set of normalized DSV) We denote by

G := {v ∈ F : v is a normalized DSV}

the set of all normalized DSVs.

The definition of normalized DSVs allows us to recursively normalize a DSV.

Definition 2.21 We set Sn := {π : {1, . . . , n} → {1, . . . , n} : π is a bijection}
and call this the set of permutations on the set {1, . . . , n}.

Definition 2.22 (normalizing function) We denote by Ψ : F → G the function
with the property that Ψ(0) = 0 and with the property that for every v ∈ F non-
trivial DSV with recursive decomposition

(
v(1), . . . ,v(v1)

)
and for every π ∈ Sv1

satisfying for all i ∈ {1, . . . , v1 − 1} that Ψ(v(π(i))) 4 Ψ(v(π(i+1))) it holds that
Ψ(v) =

(
v1,Ψ(v(π(1))), . . . ,Ψ(v(π(v1)))

)
.

Remark 2.23 The required permutation always exists and is unique because by
Proposition 2.18 4 is a total order on F .

In Matlab the function norm_DSV is an implementation of the normalizing
function Ψ. The code is given in Listing 2.5.

Listing 2.5: Matlab implementation of the normalizing function

func t ion [ DSV ] = norm_DSV( DSV )
2 % norm_DSV : normalizes the DSV

% INPUT
4 % DSV: d i f f e r e n t i a l s t r u c t u r e vec tor

% OUTPUT
6 % DSV: normalized form of DSV

8 i f length (DSV) >2
% decompose i n t o r e c u r s i v e decomposition

10 i n d _ s t a r t =find_rec_decomp (DSV) ;
ind_end =[ i n d _ s t a r t ( 2 : end ) −1, length (DSV) ] ;

12 n=length ( i n d _ s t a r t ) ;
% r e c u r s i v e l y normalize subvectors

14 max_length=max( ind_end−i n d _ s t a r t ) +1 ;
temp_vec=zeros ( n , max_length ) ;

16 pos_ind=zeros ( 1 , n ) ;
f o r i =1 :n

18 pos_ind ( i ) =max_length−(ind_end ( i )−i n d _ s t a r t ( i ) ) ;
temp_vec ( i , pos_ind ( i ) : end ) =norm_DSV(DSV( i n d _ s t a r t ( i ) : ind_end

( i ) ) ) ;
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20 end
% s o r t normalized subvectors

22 [ temp_vec , sor t_ ind ]= sortrows ( temp_vec ) ;
pos_ind=pos_ind ( sor t_ ind ) ;

24 % update vec and ordervec
pos =2;

26 f o r i =1:n
curr length=max_length−pos_ind ( i ) ;

28 DSV( pos : pos+curr length ) =temp_vec ( i , pos_ind ( i ) : end ) ;
pos=pos+curr length +1;

30 end
end

The function norm_DSV is used in the function simplify (see Listing 2.6) that
takes a list of DSVs (given as a matrix where the top row indicates how often
the DSV appears), normalizes all DSVs and then removes repeating DSVs.
Observe that simplify also keeps track of how often a particular normalized
DSV appeared and saves this amount in the first row of the matrix.

Listing 2.6: Matlab function that simplifies a list of DSVs

1 func t ion [ DSVs ] = s im pl i fy ( DSVs )
% s i mp l i fy : normalizes l i s t of DSV and removes d u p l i c a t e s

3 % INPUT
% DSVs : a matrix conta in ing DSVs as columns with the f i r s t row

represent ing the number of r e p e t i t i o n s of the DSV in t h a t column
5 % OUTPUT

% DSV: a matrix conta in ing the reduced l i s t of DSVs as columns with
the f i r s t row represent ing the number of r e p e t i t i o n s of the DSV
in t h a t column

7

% Count and remove d up l i ca t e DSVs and save the number of r e p e t i t i o n s
in the f i r s t row ( t h i s i s done once before normalizing in order
to reduce the runtime )

9 i =1 ;
while i <= s i z e ( DSVs , 2 )

11 count =0;
j = i +1;

13 while j <= s i z e ( DSVs , 2 )
i f DSVs ( 2 : end , i ) ==DSVs ( 2 : end , j )

15 count=count+DSVs ( 1 , j ) ;
DSVs ( : , j ) = [ ] ;

17 j = j −1;
end

19 j = j +1 ;
end

21 DSVs ( 1 , i ) =DSVs ( 1 , i ) +count ;
i = i +1;

23 end
% Normalize DSVs

25 f o r j =1 : s i z e ( DSVs , 2 )
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DSVs ( 2 : end , j ) =norm_DSV(DSVs ( 2 : end , j ) ) ;
27 end

% Count and remove d up l i ca t e DSVs and save the number of r e p e t i t i o n s
in the f i r s t row

29 i =1 ;
while i <= s i z e ( DSVs , 2 )

31 count =0;
j = i +1;

33 while j <= s i z e ( DSVs , 2 )
i f DSVs ( 2 : end , i ) ==DSVs ( 2 : end , j )

35 count=count+DSVs ( 1 , j ) ;
DSVs ( : , j ) = [ ] ;

37 j = j −1;
end

39 j = j +1 ;
end

41 DSVs ( 1 , i ) =DSVs ( 1 , i ) +count ;
i = i +1;

43 end
end

Remark 2.24 There exists a one-to-one correspondence between normalized DSVs
and rooted trees.

2.3 Generating L-operators in Matlab

This section describes how the differential structure vectors can be used to
construct the L-operators (see Section 2.1) as functions in Matlab. The main
idea is to iteratively generate them, using the correspondence between DSVs
and DSs.

2.3.1 Recursive construction

The first L-operator is given for all x ∈ Rd by

L
(1)
f f(x) = f (1)(x)[f(x)] (2.9)

which is the differential statement associated to v = (1, 0) and f (i.e. Φd(v, f) =

f (1)[f ] = L
(1)
f f ). The second L-operator is given by

L
(2)
f f(x) = Lf (L

(1)
f f) (2.10)
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which using Proposition 2.16 we can write as

L
(2)
f f(x) = Lf (Φd(v, f))

=

2∑
i=1

Φd(L2
i (v), f)

= Φd((2, 0, 0), f) + Φd((1, 1, 0), f)

= f (2)[f, f ] + f (1)[f (1)[f ]].

Continuing this argument iteratively it becomes clear that in order to cal-
culate the operator L(n)

f we can take the set of all DSVs {v1, . . . ,vn!} that

generate the differential statements for the operator L(n−1)
f and then differ-

entiate each of these DSVs to get the new set of DSVs given by{
Ln+1

1 (v1), . . . ,Ln+1
n+1(v1),Ln+1

1 (v2), . . .

. . . ,Ln+1
n+1(v2), . . . ,Ln+1

1 (vn!), . . . ,Ln+1
n+1(vn!)

}
which now generates the differential statements required for the operator
L

(n)
f . Therefore we have a method to construct L-operators of any order.

2.3.2 Improving construction using normalized DSVs

Performing the basic procedure outlined in Subsection 2.3.1 becomes costly
quite fast. In order to calculate the operator L(n)

f , we need to calculate n!

DSVs.

As already outlined in Subsection 2.2.4, it turns out that many of these DSVs
correspond to the same differential statements. Therefore we can use the
methods we constructed in that section in order to normalize the DSVs and
group them appropriately.

Using this simplification, we end up with the method that generates the L-
operators iteratively as in Subsection 2.3.1, while in each step normalizing
the DSVs, replacing duplicates and keeping track of how often a normalized
DSV occurred.

This method is implemented in the function genLops which is given in List-
ing 2.7. It uses the functions diff_DSV (see Listing 2.4) to differentiate the
DSVs, the function simplify (see Listing 2.6) to normalize and reduce the
list of DSVs and finally the function printLop (see Listing 2.8) to print the
L-operator to an m-file.

Listing 2.7: Matlab function for generating L-operator m-files

func t ion [ ] = genLops ( N, mypath )
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2 % genLops : generates the Loperator f u n c t i o n s L1 , . . . , LN as m−f i l e s
% INPUT

4 % N: number of maximal L operator
% mypath : path of current f o l d e r ( ’ mypath/Loperators ’ needs to

e x i s t )
6

%% F i l e management
8 cd ( [ mypath , ’/Loperators ’ ] )

%% Main Function
10 % i t e r a t i v e l y c a l c u l a t e the generat ing DSVs

DSV_mat= c e l l ( 1 ,N) ;
12 DSV_mat { 1 } = [ 1 ; 1 ; 0 ] ;

f o r k =2:N
14 t i c

s i z e _ o l d= s i z e ( DSV_mat { k−1}) ;
16 s i z e _ o l d ( 1 ) = s i z e _ o l d ( 1 ) −1;

DSV_mat { k}= zeros ( s i z e _ o l d ( 1 ) +2 , s i z e _ o l d ( 2 ) ∗ s i z e _ o l d ( 1 ) ) ;
18 % d i f f e r e n t i a t e a l l DSVs of the previous L−operator

f o r i =1: s i z e _ o l d ( 2 )
20 DSV_mat { k } ( 1 , ( i −1)∗ s i z e _ o l d ( 1 ) +1: i ∗ s i z e _ o l d ( 1 ) ) =DSV_mat { k

−1}(1 , i ) ;
DSV_mat { k } ( 2 : end , ( i −1)∗ s i z e _ o l d ( 1 ) +1: i ∗ s i z e _ o l d ( 1 ) ) =diff_DSV

( DSV_mat { k−1 } ( 2 : end , i ) ) ;
22 end

% normalize and reduce DSVs
24 DSV_mat { k}= s im p l i fy ( DSV_mat { k } ) ;

s i z e ( DSV_mat { k } )
26 toc

end
28 % generate L−operator m−f i l e s based on the generat ing DSVs

f o r l =1:N
30 printLop ( DSV_mat { l } )

end
32 %% F i l e management

cd ( mypath )
34 end

Listing 2.8: Example code for printing an L-operator to an m-file using the generating DSVs

1 func t ion [ ] = printLop (DSVs)
% printLops : c o n s t r u c t s the L−operator corresponding to DSVs i n t o

an m− f i l e
3 % INPUT

% DSVs : a matrix conta in ing DSVs as columns with the f i r s t
row represent ing the number of r e p e t i t i o n s of the DSV in t h a t
column

5

N= s i z e ( DSVs , 1 ) −2;
7 % d e l e t e and reopen a new f i l e with the name LN.m

i f e x i s t ( [ ’L ’ , num2str (N) , ’ .m’ ] , ’ f i l e ’ )
9 d e l e t e ( [ ’L ’ , num2str (N) , ’ .m’ ] )

end
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11 f i l e _ i d = fopen ( [ ’L ’ , num2str (N) , ’ .m’ ] , ’w+ ’ ) ;
% p r i n t f i r s t part of the the L−operator to f i l e

13 f p r i n t f ( f i l e _ i d , ’%% This code was automat i ca l ly generated\n ’ ) ;
f p r i n t f ( f i l e _ i d , [ ’ func t ion [ out ] = L ’ , num2str (N) , ’ ( x ) \n\n ’ ] ) ;

15 f p r i n t f ( f i l e _ i d , ’ f v a l =myfun ( x ) ;\n ’ ) ;
% p r i n t the L−operator to f i l e using correspondance_map

17 DS=correspondence_map (DSVs ( 2 : end , 1 ) ) ;
f p r i n t f ( f i l e _ i d , [ ’ out= ’ ,DS ] ) ;

19 f o r j =2 : s i z e ( DSVs , 2 )
DS=correspondence_map (DSVs ( 2 : end , j ) ) ;

21 f p r i n t f ( f i l e _ i d , [ ’+ ’ , num2str (DSVs ( 1 , j ) ) , ’∗ ’ ,DS ] ) ;
end

23 f p r i n t f ( f i l e _ i d , ’ ;\n ’ ) ;
f p r i n t f ( f i l e _ i d , ’ end ’ ) ;

25 end

2.4 Automatic differentiation

In order to apply the L-operators from the previous section, we need a
method to calculate the elementary derivatives of the right hand side f in
Matlab. The method we use is called automatic differentiation which can ef-
ficiently calculate the derivative of functions given in algorithmic form (e.g.
as an m-file in Matlab). The only limitation is that the function only con-
sists of the basic arithmetic operations (+,-,*,/), elementary functions (e.g.
exp,sin,cos) and for-loops.

We do not go into any further detail, but only remark that automatic dif-
ferentiation is superior to both numerical approximations of the derivatives
and symbolic differentiation.

For Matlab there exists an open source project called ADiGator (see [5])
which provides this functionality.

The Matlab function Listing 2.9 calculates the required elementary deriva-
tives from the functions of the ADiGator output.

Listing 2.9: Matlab function for generating D-operator m-files

1 func t ion [ ] = genDops ( l , dim , mypath )
% genDops : generates the f u n c t i o n s D1 , . . . , Dl corresponding to the

elementary d e r i v a t i v e s ( based on adigator ) as m−f i l e s
3 % INPUT :

% l : order of h ighes t d e r i v a t i v e
5 % dim : dimension of s o l u t i o n vektor , rhs : R^dim −−> R^dim

% mypath : path of current f o l d e r ( ’ mypath/Doperators ’ needs to
e x i s t )

7

%% F i l e management
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9 cd ( [ mypath , ’/Doperators ’ ] )
%% Create adigator d e r i v a t i v e f u n c t i o n s

11 opts=adigatorOptions ( ’ overwrite ’ , 1 ) ;
x=adigatorCreateDerivInput ( [ dim 1 ] , ’ x ’ ) ;

13 adigator ( ’myfun ’ , { x } , ’ f1 ’ , opts )
x= s t r u c t ( ’ f ’ , x ) ;

15 dxst r = [ ] ;
f o r i =2 : l

17 % update dxs t r to dx . . . dx ( i t imes )
dxs t r =[ dxstr , ’ dx ’ ] ;

19 % update input v a r i a b l e x
x . ( dxs t r ) =ones ( dim , 1 ) ;

21 % generate adigator d e r i v a t i v e f i l e
adigator ( [ ’ f ’ , num2str ( i −1) ] , { x } , [ ’ f ’ , num2str ( i ) ] , opts )

23 end
%% Create D1 .m, . . . , Dl .m

25 dxst r = [ ] ;
f o r i =1 : l

27 % update dxs t r to dx . . . dx ( i t imes )
dxs t r =[ dxstr , ’ dx ’ ] ;

29 % d e l e t e and reopen a new f i l e with the name Dk .m
i f e x i s t ( [ ’D ’ , num2str ( i ) , ’ .m’ ] , ’ f i l e ’ )

31 d e l e t e ( [ ’D ’ , num2str ( i ) , ’ .m’ ] )
end

33 f i l e _ i d = fopen ( [ ’D ’ , num2str ( i ) , ’ .m’ ] , ’w+ ’ ) ;
% check whether i ’ th d e r i v a t i v e i s zero

35 var= s t r u c t ( ’ f ’ , ones ( dim , 1 ) , ’ dx ’ , ones ( dim , 1 ) ) ;
t e s t =eval ( [ ’ f ’ , num2str ( l ) , ’ ( var ) ’ ] ) ;

37 i f not ( i s f i e l d ( t e s t , dxs t r ) )
% write the f i l e

39 f p r i n t f ( f i l e _ i d , ’%% This code was automat i ca l ly generated\n ’
) ;

f p r i n t f ( f i l e _ i d , [ ’ func t ion [ out ] = D ’ , num2str ( i ) , ’ ( x , v )
\n\n ’ ] ) ;

41 f p r i n t f ( f i l e _ i d , ’ out=zeros ( s i z e ( v , 1 ) , 1 ) ;\n ’ ) ;
f p r i n t f ( f i l e _ i d , ’ end\n\n ’ ) ;

43 e l s e i f dim==1
% write the f i l e

45 f p r i n t f ( f i l e _ i d , ’%% This code was automat i ca l ly generated\n ’
) ;

f p r i n t f ( f i l e _ i d , [ ’ func t ion [ out ] = D ’ , num2str ( i ) , ’ ( x , v )
\n\n ’ ] ) ;

47 f p r i n t f ( f i l e _ i d , [ ’ temp= f ’ , num2str ( l ) , ’ ( s t r u c t ( ’ ’ f ’ ’ , x , ’ ’ dx ’ ’
, 1 ) ) ;\n ’ ] ) ;

f p r i n t f ( f i l e _ i d , [ ’\ t out=temp . ’ , dxstr , ’∗prod ( v ) ;\n\n ’ ] ) ;
49 f p r i n t f ( f i l e _ i d , ’ end\n ’ ) ;

e l s e
51 % write the f i l e

f p r i n t f ( f i l e _ i d , ’%% This code was automat i ca l ly generated\n ’
) ;

53 f p r i n t f ( f i l e _ i d , [ ’ func t ion [ out ] = D ’ , num2str ( i ) , ’ ( x , v )
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\n\n ’ ] ) ;
f p r i n t f ( f i l e _ i d , ’%% uni t vektor\n ’ ) ;

55 f p r i n t f ( f i l e _ i d , ’uv = @( n , k ) [ zeros ( k−1 ,1) ; 1 ; zeros ( n−k , 1 )
] ; \ n\n ’ ) ;

f p r i n t f ( f i l e _ i d , ’n= s i z e ( v , 1 ) ;\n ’ ) ;
57 f p r i n t f ( f i l e _ i d , [ ’ temp= f ’ , num2str ( l ) , ’ ( s t r u c t ( ’ ’ f ’ ’ , x , ’ ’ dx ’ ’

, ones ( n , 1 ) ) ) ;\n ’ ] ) ;
f p r i n t f ( f i l e _ i d , ’ out=zeros ( n , 1 ) ;\n ’ ) ;

59 f p r i n t f ( f i l e _ i d , [ ’ f o r i =1 : length ( temp . ’ , dxstr , ’ ) \n ’ ] ) ;
f p r i n t f ( f i l e _ i d , [ ’\ t ind=sub2ind ( s i z e ( v ) , temp . ’ , dxstr , ’

_ l o c a t i o n ( i , 2 : end ) , 1 : ’ , num2str ( i ) , ’ ) ;\n ’ ] ) ;
61 f p r i n t f ( f i l e _ i d , [ ’\ t out=out+temp . ’ , dxstr , ’ ( i ) ∗prod ( v ( ind ) ) ∗

uv ( n , temp . ’ , dxstr , ’ _ l o c a t i o n ( i , 1 ) ) ;\n ’ ] ) ;
f p r i n t f ( f i l e _ i d , ’ end\n\n ’ ) ;

63 f p r i n t f ( f i l e _ i d , ’ end\n ’ ) ;
end

65 end
%% F i l e management

67 cd ( mypath )
end

2.5 Taylor methods in Matlab

Using the L-operators L1,...,Lm (see Section 2.3) and the derivative operators
D1,...,Dm corresponding to the right hand side f (see Section 2.4), we can
easily construct the Taylor methods up to order m+ 1. The Matlab function
genTaylorStep (Listing 2.10) combines the L-operators in the correct form,
so that they can be used by the function taylor_method (Listing 2.11).

Listing 2.10: Matlab function for generating the Taylorstep m-files

1 func t ion [ ] = genTaylorStep ( orders , mypath )
% genTaylorStep : generates the TaylorStep funct ion f o r each order

given in orders and saves them as m−f i l e s
3 % INPUT :

% orders : vec tor conta in ing the orders f o r which the TaylorStep
should be c a l c u l a t e d

5 % mypath : path of current f o l d e r ( ’ mypath/TaylorSteps ’ needs to
e x i s t )

7 %% F i l e management
cd ( [ mypath , ’/TaylorSteps ’ ] )

9 %% Main funct ion
f o r k =1: length ( orders )

11 % d e l e t e and reopen a new f i l e with the name TaylorStep .m
i f e x i s t ( [ ’ TaylorStep ’ , num2str ( orders ( k ) ) , ’ .m’ ] , ’ f i l e ’ )

13 d e l e t e ( [ ’ TaylorStep ’ , num2str ( orders ( k ) ) , ’ .m’ ] )
end

15 f i l e _ i d = fopen ( [ ’ TaylorStep ’ , num2str ( orders ( k ) ) , ’ .m’ ] , ’w+ ’ ) ;
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f p r i n t f ( f i l e _ i d , ’%% This code was automat i ca l ly generated\n ’ ) ;
17 f p r i n t f ( f i l e _ i d , [ ’ funct ion [ s tep ] = TaylorStep ’ , num2str ( orders

( k ) ) , ’ ( h , x ) \n ’ ] ) ;
f p r i n t f ( f i l e _ i d , ’ s tep=h∗myfun ( x ) ’ ) ;

19 f o r i =2: orders ( k )
f p r i n t f ( f i l e _ i d , [ ’+h^ ’ , num2str ( i ) , ’/ f a c t o r i a l ( ’ , num2str ( i ) ,

’ ) ∗L ’ , num2str ( i −1) , ’ ( x ) ’ ] ) ;
21 end

f p r i n t f ( f i l e _ i d , ’ ;\n ’ ) ;
23 f p r i n t f ( f i l e _ i d , ’ end ’ ) ;

end
25 %% F i l e management

cd ( mypath )
27 end

Listing 2.11: Matlab implementation of the Taylor methods

func t ion [ y_T ] = taylor_method ( T , y_0 , steps , order )
2 % taylor_method : Taylor method ODE−s o l v e r with a r b i r a r y order f o r

myfun .m as rhs
% INPUT

4 % T : f i n a l time
% y_0 : i n i t i a l value

6 % steps : number of time s teps
% order : order of ODE−s o l v e r

8 % OUTPUT
% y_T : approximated s o l u t i o n at time T

10

% generate array conta in ing a l l t a y l o r s teps up to order 15 ( add
more i f required )

12 TaylorStep ={@( h , x ) TaylorStep1 ( h , x ) ,@( h , x ) TaylorStep2 ( h , x ) ,@( h , x )
TaylorStep3 ( h , x ) ,@( h , x ) TaylorStep4 ( h , x ) ,@( h , x ) TaylorStep5 ( h , x ) ,@
( h , x ) TaylorStep6 ( h , x ) ,@( h , x ) TaylorStep7 ( h , x ) ,@( h , x ) TaylorStep8 ( h
, x ) ,@( h , x ) TaylorStep9 ( h , x ) ,@( h , x ) TaylorStep10 ( h , x ) ,@( h , x )
TaylorStep11 ( h , x ) ,@( h , x ) TaylorStep12 ( h , x ) ,@( h , x ) TaylorStep13 ( h , x
) ,@( h , x ) TaylorStep14 ( h , x ) ,@( h , x ) TaylorStep15 ( h , x ) } ;

% Apply Taylor Method
14 h=T/steps ;

y_T=y_0 ;
16 f o r i =1: s teps

y_T=y_T+TaylorStep { order } ( h , y_T ) ;
18 end

end



Chapter 3

Runge-Kutta methods

In this chapter we present the famous Runge-Kutta methods and present
a bootstrapping procedure that given a Runge-Kutta method of order m
creates a new Runge-Kutta method of order m + 1. The advantage of this
method is that it allows to explicitly write down the higher order method.
However, subsequent applications of the bootstrapping approach lead to a
blow up in complexity of the new method.

We follow [6] and [1] and refer to these books for more details.

3.1 Runge-Kutta methods

Definition 3.1 (explicit Runge-Kutta method) Assume the setting in Section 1.1.
Let s ∈ N, b = (b1, . . . , bs) ∈ Rs and A = (ai,j)i,j∈{1,...,s} ∈ Rs,s be a strictly
lower triangular matrix, and let ki : [0, T − t0] → Rd, i ∈ {1, . . . , s} with the
property that for all i = 1, . . . , s and all h ∈ [0, T − t0] it holds that

ki(h) = f

y0 + h
s∑
j=1

ai,jkj

 . (3.1)

Then we call

yh = y0 + h
s∑
i=1

biki(h) (3.2)

an explicit s-step (A,b)-Runge-Kutta method.

Remark 3.2 To shorten the notation we generally just neglect the h as it is clear
from the context and simply write ki instead of ki(h). If the right hand side f
additionally has a time dependence (i.e. f : [t0, T ]× Rd → Rd), then an additional
vector c ∈ Rs is introduced and the steps ki are defined by

ki = f

t+ cih, y0 + h
s∑
j=1

ai,jkj

 .

23
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In this case the Runge-Kutta methods are often given in a so-called Butcher tableau

c A

b>

We will also use this convention and will always add the vector c for the method
although it will not be required in our considerations.

Historically Runge-Kutta methods with order of convergence m were cre-
ated by comparing appropriate Taylor expansions of the steps ki with the
Taylor method of order m (see Chapter 2) and ensuring that all terms of or-
der smaller or equal to m in h cancel out by an appropriate choice of A and
b. The most famous such methods up to order 4 are collected below in Fig-
ure 3.1. A list of some further methods up to order 8 is given in Section 3.2
below.
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Figure 3.1: classical RK-methods up to order 4

The Matlab function RungeKutta given in Listing 3.1 is an implementation
of explicit Runge-Kutta methods.

Listing 3.1: Matlab implementation of Runge-Kutta methods

func t ion [ y_T ] = RungeKutta ( f , T , y_0 , steps , b , A)
2 % RungeKutta : (A, b )−Runge−Kutta method ODE−s o l v e r

% INPUT
4 % f : funct ion handle of rhs

% T : f i n a l time
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6 % y_0 : i n i t i a l value
% steps : number of time s teps

8 % b : b−vector
% A: A−matrix

10 % OUTPUT
% y_T : approximated s o l u t i o n at time T

12

s=length ( b ) ;
14 h=T/steps ;

y_T=y_0 ;
16 f o r n=1: s teps

k=zeros ( s , length ( y_0 ) ) ;
18 f o r i =1: s

k ( i , : ) = f ( y_T+h∗ (A( i , : ) ∗k ) ’ ) ;
20 end

y_T=y_T+h∗ ( b∗k ) ’ ;
22 end

end

3.2 High-order Runge-Kutta methods

The following methods were constructed by Fehlberg in [2] and are exam-
ples of explicit Runge-Kutta methods of order 5 to 8. All these methods are
part of embedded Runge-Kutta methods which allow an efficient adaptive
step size control. For more details see [2].
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Figure 3.2: 5th order Runge-Kutta method
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Figure 3.3: 6th order Runge-Kutta method
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Figure 3.4: 7th order Runge-Kutta method
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Figure 3.5: 8th order Runge-Kutta method
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3.3 Gauss-Legendre quadrature

In this section we give a short overview of the Gauss-Legendre quadrature,
we follow [3] and also refer to this book for more details.

Let d ∈ N, a, b ∈ R with a < b and a sufficiently regular mapping f : [a, b]→
Rd. Then for n ∈ N, x ∈ [a, b]n and w ∈ [0, 1]n we call

Inx,w(f) =
n∑
i=1

wif(xi) (3.3)

an n-step quadrature formula with nodes x and weights w. The idea of
numerical quadrature is to choose the weights and nodes in such a way that
the quadrature formula Inx,w(f) is in some sense a good approximation of
the the integral of f on the interval [a, b], i.e.

Inx,w(f) ≈
∫ b

a
f(x)dx. (3.4)

The Gauss-Legendre quadrature assumes that f is approximately polyno-
mial and then chooses x and w such that the associated quadrature formula
I(f)nx,w is exact for all polynomials of degree at most 2n− 1. To achieve this
one introduces for k = {0, 1, 2, . . . } the normalized Legendre polynomials
pk : [−1, 1]→ [−1, 1] given by

pk(x) =
k!

(2k)!

dk

dxk
(
x2 − 1

)k
. (3.5)

Then for a = −1 and b = 1, the Gauss-Legendre nodes x and weights w are
the unique points satisfying

• pn(xk) = 0 for all k = 1, . . . , n

•
∑n

i=1 pk(xi)wi = 1{k=0} for all k = 1, . . . , n.

It can be shown that this choice of nodes and weights results in a quadrature
formula on the interval [−1, 1] which is exact for polynomials up to degree
at most 2n−1 (see Theorem 3.6.12 in [3]). For a general interval [a, b] we can
simply shift the nodes and rescale the weights appropriately.

A good Matlab implementation that determines the Gauss-Legendre nodes
and weights is the freely available open source function lgwt written by
Greg von Winckel (see [7]).

3.4 Bootstrapping

This section mainly follows [6]. Bootstrapping is a method that allows us to
take a one-step method and increase the order by 1. The underlying idea
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is very similar to the idea used in the derivation of the Taylor methods (see
Section 2.1). Again we begin with the integral form of the ODE (1.2)

y(h) = y0 +

∫ h

t0

f(y(s))ds. (3.6)

Next assume that we are given an s-step (A,b)-Runge-Kutta method yRKh
with order of convergence m. We then replace y(s) in (3.6) by yRKs

y(h) ≈ y0 +

∫ h

t0

f
(
yRKs

)
ds. (3.7)

In order to get rid of the integral, we use the r-step Gauss-Legendre quadra-
ture on [0, 1] with nodes x and weights w to get

ynewh = y0 + h

r∑
i=1

wif
(
yRKhxi

)
= y0 + h

r∑
i=1

wif

(
y0 + hxi

s∑
i=1

bik
hxi
i

)

where khxii = f
(
y0 + hxi

∑s
j=1 ai,jkj

)
. Observe that this is the Runge-Kutta

method corresponding to

Â =



x1A . . . 0 0
...

. . .
...

...
0 . . . xrA 0

x1b
> . . . 0 0

...
. . .

...
...

0 . . . xrb
> 0


∈ Rr(s+1)×r(s+1) (3.8)

b̂> =
(
0 . . . 0 w>

)
∈ R1×r(s+1) (3.9)

Given that r is chosen such that the quadrature formula converges with
order m, we can hence construct a new method with order m + 1 from the
old method. A Matlab implementation is given in Listing 3.2.

Listing 3.2: Matlab implementation of the bootstrapping method

1 func t ion [ b_new , A_new ] = boots trapButcher ( b , A, r )
% boots trapButcher : c o n s t r u c t s the b−vector and A−matrix by

bootstrapping (A, b )−RK method with an r−s tep Gauss−Legendre
quadrature

3 % INPUT
% b : b−vector of old RK−method

5 % A: A−matrix of old RK−method
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% r : number of quadrature nodes
7 % OUTPUT

% b_new : b−vector of bootstrapped RK−method
9 % A_new : A−matrix of bootstrapped RK−method

11 % use lgwt .m ( by Greg von Winckel )
[ x ,w]= lgwt ( r , 0 , 1 ) ;

13 s=length ( b ) ;
% c o n s t r u c t new s

15 s_new=r ∗ ( s +1) ;
% c o n s t r u c t new A

17 A_new=zeros ( s_new ) ;
A_new ( 1 : r∗s , 1 : r∗ s ) =kron ( diag ( x ) ,A) ;

19 A_new( r∗ s +1: end , 1 : r∗ s ) =kron ( diag ( x ) , b ) ;
% c o n s t r u c t new b

21 b_new=zeros ( 1 , s_new ) ;
b_new ( r∗ s +1: end ) =w’ ;

23 % si mp l i fy butcher t a b l e
rows_to_remove = [ ] ;

25 f o r i =1: s_new
i f a l l (A_new( i , : ) ==0) && a l l (A_new ( : , i ) ==0)

27 rows_to_remove =[ rows_to_remove , i ] ;
end

29 end
f o r i =1: length ( rows_to_remove )

31 A_new( rows_to_remove ( i ) , : ) = [ ] ;
A_new ( : , rows_to_remove ( i ) ) = [ ] ;

33 rows_to_remove=rows_to_remove−1;
s_new=s_new−1;

35 b_new ( 1 ) = [ ] ;
end

37 end



Chapter 4

Extrapolation methods

In this chapter we introduce the explicit extrapolation methods. These turn
out to have many desirable properties which make them quite efficient even
for high orders. In fact, it turns out that the extrapolation methods we
discuss here are explicit Runge-Kutta methods, however due to the way they
are constructed, they are not explicitly represented using Butcher tableaus.

The following closely follows [6].

4.1 Motivation

Assume the setting in Section 1.1 with t0 = 0. Fix τ ∈ [0, T ], let Ψ be a
one-step method of order m and denote the exact solution by y. Moreover,
let n1, n2, · · · ∈ N be an increasing sequence and set for all i ∈ N, hi = τ/ni.
Then we define

yhi(τ) := Ψhi
(
· · ·
(

Ψhi(y0)
))

︸ ︷︷ ︸
ni compositions of Ψhi

(4.1)

the approximated solution at τ using the one-step method Ψ with time-step
size hi. Observe that

y(τ) = lim
i→∞

yhi(τ). (4.2)

The idea behind the extrapolation methods is to fix k ∈ N and find an inter-
polating polynomial p such that

p(hi) = yhi(τ) for all i = 1, . . . , k (4.3)

and then use p(0) as a new approximation of y(τ).

In order for this to be a sensible approximation, we need that yh(τ) (as a
function of h) can be approximated by a polynomial. This is made precise
in the following definition.

31
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Definition 4.1 ((m, k, ω)-asymptotic expansion) Assume the setting in Sec-
tion 1.1 with t0 = 0, let m, k ∈ N and Ψ be a one-step method of order m and
assume that there exist ω ∈ N, ε ∈ (0,∞), e0, e1, . . . , ek−1 ∈ Rd and a function
Rk : [0, T ]× (0, ε)→ Rd such that for all h ∈ (0, ε) with τ

h ∈ N it holds that

yh(τ) = y(τ) + e0h
m + e1h

m+ω + · · ·+ ek−1h
m+(k−1)ω +Rk(τ, h)hm+kω.

Then we say Ψ has an (m, k, ω)-asymptotic expansion and we denote by p̄ the
polynomial satisfying for all h ∈ R that

p̄(h) = y(τ) + e0h
m + e1h

m+ω + · · ·+ ek−1h
m+(k−1)ω. (4.4)

Remark 4.2 For any k ∈ N it can be shown that a one-step method of order m
has an (m, k, 1)-asymptotic expansion (see Satz 4.37 [6]). If the numerical approxi-
mation is additionally reversible, it also has an (m, k, 2)-asymptotic expansion (see
Satz 4.42 [6]). In both cases it holds that the remainder term satisfies uniformly in
0 < h ≤ τ

Rk(τ, h) = O(τ). (4.5)

Given a one-step method for which there exists an (m, k, ω)-asymptotic ex-
pansion with polynomial part p̄ we set

Vm,ωk+1 := {q ∈ C0
(
R,Rd

)
: ∃α0, . . . , αk s.t.

q(x) = α0 + α1x
m + · · ·+ αkx

m+(k−1)ω}
(4.6)

and choose the interpolating polynomial p such that it satisfies

(i) p ∈ Vm,ωk+1 ,

(ii) p(hi) = yhi(τ) for all i = 1, . . . , k.

It can be shown that a unique such interpolating polynomial always exists
given that the hi in (ii) are distinct (see Lemma 4.33. [6]).

Using the (m, k, ω)-asymptotic expansion, it follows for all i = 1, . . . , k + 1

that the polynomial q := p− p̄ satisfies

q(hi) = Rk(τ, hi)h
m+kω
i . (4.7)

Therefore q is an interpolating polynomial of the function Rk(τ, ·)(·)m+kω

and since p̄(0) = y(τ) we get using the error estimate for interpolation (see
Lemma 4.33 [6]) that

|q(0)| = |p(0)− y(τ)| ≤ Ch1,...,hk+1
max

1≤i≤k+1
|Rk(τ, hi)hm+kω

i |. (4.8)

Hence using (4.5) we get for ω ∈ {1, 2} that

|p(0)− y(τ)| = O(τm+kω+1). (4.9)
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Now fix an increasing sequence n1, . . . , nk ∈ N and set F := {n1, . . . , nk}.
Then the previous discussion motivates the following definition.

Definition 4.3 (F -extrapolation methods) Assume the setting in Section 1.1
with t0 = 0, let m ∈ N, Ψ be a one-step method of order m, and let p ∈ Vm,wk+1

satisfying for all n ∈ F that p(hn) = yh
n

(h). Then we call the one-step method

defined by
yFh = p(0) (4.10)

an F-extrapolation method associated to Ψ (an F-extrapolation method with base
method Ψ).

Observe that if we use a base method with order m and m = ω then the
interpolation can be performed using classical interpolation techniques (e.g.
Aitken-Neville see Section 4.2) with h̃i = (hi)

ω. Therefore such methods
are generally more efficient, compared to methods with m 6= ω for which
a more sophisticated interpolation needs to be performed. One class of
extrapolation methods where m = ω = 1 is illustrated in Section 4.3. There
the explicit Euler method is used as base method. A more advanced class
of extrapolation methods where m = ω = 2 is given in Section 4.4. There
the explicit midpoint method together with an Euler starting step is used as
base method.

Nevertheless, it is also possible to use high order methods as base methods.
Take for example a one-step method yh of order m. Then for F = {1, 2}
we can construct the corresponding F-extrapolation method explicitly. Let
p(h) = α0 + α1h

m be the interpolating polynomial, then it has to satisfy

p(h) = yh(h), p(h2 ) = yh
2

(h). (4.11)

Solving this system of equations leads to

y
{1,2}
h = p(0) = α0 =

2mp(h2 )− p(h)

2m − 1
. (4.12)

It can be shown that if yh is a s-step Runge-Kutta method then y
{1,2}
h is a

(3s− 1)-step Runge-Kutta method.

4.2 Aitken-Neville interpolation

The following is intended as a short overview of the Aitken-Neville interpo-
lation scheme, which we use to perform the interpolation in the methods
described in Section 4.3 and Section 4.4. For more details see [4].
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For n ∈ N, let x1, . . . , xn+1 ∈ R be pairwise distinct points and let z1, . . . , zn+1 ∈
Rd. Then it is a well known fact that there exist unique polynomial p(x) =

α0 + α1x+ · · ·+ αnx
n satisfying

p(xi) = zi for all i = 1, . . . , n+ 1. (4.13)

The Aitken-Neville interpolation scheme allows for fixed x ∈ R to recur-
sively calculate the value of the interpolation polynomial at the point x (i.e.
p(x)). Start by setting pi,0 := yi for all i ∈ {1, . . . , n + 1}. Then for all
k ∈ {1, . . . , n} and all i ∈ {1, . . . , n+ 1− k} set

pi,k+1(x) = pi+1,k(x) +
xi+k+1 − x
xi+k+1 − xi

(pi,k(x)− pi+1,k(x)) (4.14)

Then p1,n+1(x) = p(x).

A Matlab implementation of the Aitken-Neville Scheme is given in List-
ing 4.1.

Listing 4.1: Matlab implementation of Aitken-Neville Scheme

func t ion [ pval ] = a i t k e n _ n e v i l l e ( x , y , val )
2 % a i t k e n _ n e v i l l e : c a l c u l a t e s p ( val ) where p i s the unique polynomial

of degree length ( x ) s . t . p ( x ( i ) ) =y ( i ) f o r a l l i
% INPUT

4 % x : i n t e r p o l a t i o n nodes
% y : i n t e r p o l a t i o n values

6 % val : eva luat ion point of i n t e r p o l a t i o n polynomial
% OUTPUT

8 % pval : p ( val ) where p i s i n t e r p o l a t i o n polynomial

10 AN_step=y ;
n=length ( x ) ;

12 f o r k =1:n
f o r i =1:n−k

14 AN_step ( : , i ) =AN_step ( : , i +1) +( x ( i +k )−val ) /( x ( i +k )−x ( i ) ) ∗ (
AN_step ( : , i )−AN_step ( : , i +1) ) ;
end

16 end
pval=AN_step ( : , 1 ) ;

18 end

4.3 Euler extrapolation method

For k ∈ N, set Fk := {1, . . . , k+1}. Since the explicit Euler method has order
1 and in view of Remark 4.2, it holds that it has a (1, k, 1)-asymptotic expan-
sion. Therefore, using the considerations in Section 4.1 (in particular (4.9)),
the extrapolation methods yFk

h have order k + 1. Furthermore, since V1,1
k+1 is
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just the space of polynomial of degree k with d-dimensional coefficients, we
can apply classical interpolation techniques to find the interpolating polyno-
mial p.

The Matlab function euler_extrapolation in Listing 4.2 realizes one step
of the extrapolation method associated to the explicit Euler method. The
interpolation is performed using the Aikten-Neville Algorithm described in
Section 4.2.

Listing 4.2: Matlab implementation of the class of extrapolation methods associated to explicit

Euler method

func t ion [ y_h ] = e u l e r _ e x t r a p o l a t i o n ( f , y_0 , h , k )
2 % e u l e r _ e x t r a p o l a t i o n : Euler−e x t r a p o l a t i o n one−s tep method with

a r b i r a r y order
% INPUT

4 % f : funct ion handle of rhs
% y_0 : i n i t i a l value

6 % h : t imestep s i z e
% k : number of i n t e r p o l a t i o n s ( order=k+1)

8 % OUTPUT
% y_h : approximation r e s u l t i n g from one step of k−Euler−

e x t r a p o l a t i o n
10

F = 1 : ( k+1) ;
12 sigma=h./ F ;

% apply e x p l i c i t eu le r method as base method
14 i n t e r p o l a t i o n _ p t s =repmat ( y_0 , 1 , k+1) ;

f o r i =1: k+1
16 f o r j = 1 : ( F ( i ) −1)

i n t e r p o l a t i o n _ p t s ( : , i ) = i n t e r p o l a t i o n _ p t s ( : , i ) +sigma ( i ) ∗ f (
i n t e r p o l a t i o n _ p t s ( : , i ) ) ;

18 end
end

20 % find the value of the i n t e r p o l a t i o n polynomial a t 0 using Nevi l l e
Aitken algorithm

y_h= a i t k e n _ n e v i l l e ( sigma , i n t e r p o l a t i o n _ p t s , 0 ) ;
22 end

4.4 Explicit midpoint extrapolation method

As noted in Remark 4.2, there exists an asymptotic expansion with ω = 2

if the base method is reversible. Hence, if we use a method with order 2

which is additionally reversible, we can expect the associated extrapolation
methods to increase in order by 2 for each new extrapolation step. One
option is to use the explicit midpoint rule

yh = y0 + hf(yh
2

) (4.15)
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which is a two step method together with the explicit Euler method as a
starting step. This results in

yh = y0 + hf(y0 +
h

2
f(y0)). (4.16)

which is the explicit Runge-Kutta midpoint method listed in Figure 3.1. Al-
though this method is not reversible, it can be shown that an extension of
(4.16) to the ODE

x′(t) = f(y(t))

y′(t) = f(x(t))

is reversible and hence falls into the setting of Remark 4.2. The (2,k,2)-
asymptotic expansion then carries over to the one-step method (4.16); for
more details see Section 4.3.3 in [6].

For k ∈ N, set Fk := {2, 4, . . . , 2(k+ 1)}. Then using the same considerations
as in Section 4.1 (in particular (4.9)), the extrapolation methods yFk

h associ-
ated to the method in (4.16) have order 2k+2. These methods are sometimes
referred to Gragg-Bulirsch-Stoer methods (GBS-methods) in the literature.

In particular, these methods are Runge-Kutta methods with step sizes given
by

s = (k + 1)2 + 1 = (m/2)2 + 1 (4.17)

where k is the number of extrapolation steps and m := 2k+ 2 is the order of
the methods (see Satz 4.46 in [6]).

The Matlab function midpoint_extrapolation (see Listing 4.3) is an imple-
mentation of these extrapolation methods associated to the explicit RK mid-
point method.

Listing 4.3: Matlab implementation of the class of extrapolation methods associated to explicit

Runge-Kutta midpoint method

func t ion [ y_h ] = midpoint_extrapolat ion ( f , y_0 , h , k )
2 % midpoint_extrapolat ion : midpoint−e x t r a p o l a t i o n one−s tep method

with a r b i r a r y order
% INPUT

4 % f : funct ion handle of rhs
% y_0 : i n i t i a l value

6 % h : t imestep s i z e
% k : number of i n t e r p o l a t i o n s ( order =2∗k+2)

8 % OUTPUT
% y_h : approximation r e s u l t i n g from one step of k−midpoint−

e x t r a p o l a t i o n
10

F = 2∗ ( 1 : ( k+1) ) ;
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12 sigma=h./ F ;
% apply e x p l i c i t midpoint method as base method with an eu le r

s t a r t i n g step
14 i n t e r p o l a t i o n _ p t s =zeros ( length ( y_0 ) , k+1) ;

f o r i =1: k+1
16 step1=y_0 ;

s tep2=y_0+sigma ( i ) ∗ f ( y_0 ) ;
18 f o r j = 1 : ( F ( i ) −1)

temp=step1 +2∗sigma ( i ) ∗ f ( s tep2 ) ;
20 step1=step2 ;

s tep2=temp ;
22 end

i n t e r p o l a t i o n _ p t s ( : , i ) =step2 ;
24 end

% find the value of the i n t e r p o l a t i o n polynomial a t 0 using Nevi l l e
Aitken algorithm

26 y_h= a i t k e n _ n e v i l l e ( sigma . ^ 2 , i n t e r p o l a t i o n _ p t s , 0 ) ;
end



Chapter 5

Applications

In this chapter we apply the Taylor methods (Chapter 2), the Runge-Kutta
methods (with bootstrapping steps) (Chapter 3) and the extrapolation meth-
ods (Chapter 4) to five different examples and illustrate their convergence
rates in plots.

The convergence plots are constructed in the following way. First we ap-
proximate the exact solution y(T ) using the Matlab integrator ode45 with an
absolute tolerance of 10e-13 and a relative tolerance of 10e-16. Due to the
very low tolerance it is sufficient to take this as the "exact" solution. Then
for a fixed one step method we calculate approximations of y(T ) using 1 to
10 time steps and denote these by ȳ(T, n), where n is the number of time
steps. Finally, we plot ‖ȳ(T, n)− y(T )‖1 against the number of time steps n
to get the convergence plot.

5.1 Example 1

The first example we consider, is the ODE given by{
y′(t) = −y(t)5, t ∈ [0, 0.1]

y(0) = 1.
(5.1)

5.1.1 Taylor methods

Due to the one-dimensional polynomial form of the right hand side we can
use the extremely efficient polynomial implementation of the Taylor meth-
ods (see Listing 2.1). This allows the use of very high order Taylor methods
(here order 1 to 20), see Figure 5.1.

38
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timesteps
10 0 10 1
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r

10 -20

10 -15

10 -10

10 -5

10 0
Example 1: Taylor methods

Order 1
Order 2
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Order 4
Order 5
Order 6
Order 7
Order 8
Order 9
Order 10
Order 11
Order 12
Order 13
Order 14
Order 15
Order 16
Order 17
Order 18
Order 19
Order 20

Figure 5.1: Taylor methods of order 1 to 20 applied to Example 1

5.1.2 Runge-Kutta methods

Here we use the Runge-Kutta methods given in Section 3.1 and Section 3.2 of
order 1 to 8 and then apply two bootstrapping steps (with Gauss-Legendre
quadrature) to the 8th order method to get methods of order 9 and 10. The
resulting convergence plot is given in Figure 5.2.
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Order 1
Order 2
Order 3
Order 4
Order 5
Order 6
Order 7
Order 8
Order 9
Order 10

Figure 5.2: Runge-Kutta methods of order 1 to 10 applied to Example 1

5.1.3 Extrapolation methods

To illustrate the extrapolation methods, we use the explicit Euler extrapola-
tion methods (see Section 4.3) with extrapolation steps Fk = {1, 2, .., k + 1}
for k = 1, . . . , 9 which corresponds to methods of order 2, 3, . . . , 10, see Fig-
ure 5.3.
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Example 1: Euler extrapolation methods
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Order 8
Order 9
Order 10

Figure 5.3: Euler extrapolation methods of orders 2,3,...,10 applied to Example 1

5.2 Example 2

Next we take a look at a high-dimensional example. For this let d ∈ N and
set

f(x) :=



x2
1 − 1

1+x22
x2

2 − 1
1+x23

...
x2
d-1 −

1
1+x2d

x2
d −

1
1+x21


for all x ∈ Rd. (5.2)

In this example we take d = 20 and consider the ODE given by{
y′(t) = f(y(t)), t ∈ [0, 0.1]

yi(0) = 1, i ∈ {1, . . . , d}.
(5.3)

5.2.1 Taylor methods

To apply the Taylor methods to this ODE we need the general version using
the L-operators, which we derived in Chapter 2. Since these methods rely
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on auto-differentiation, they require more f -evaluations and are quite a bit
slower. The convergence plot in Figure 5.4 shows the Taylor methods of
order 1 to 8.

timesteps
10 0 10 1
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ro

r

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0
Example 2: Taylor methods

Order 1
Order 2
Order 3
Order 4
Order 5
Order 6
Order 7
Order 8

Figure 5.4: Taylor methods of orders 1 to 8 applied to Example 2 with d = 20

5.2.2 Runge-Kutta methods

Again we use the Runge-Kutta methods given in Section 3.1 and Section 3.2
of order 1 to 8 and then apply two bootstrapping steps (with Gauss-Legendre
quadrature) to the 8th order method to get methods of order 9 and 10. The
resulting error plot is given in Figure 5.5.
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Figure 5.5: Runge-Kutta methods of order 1 to 10 applied to Example 2 with d = 20

5.2.3 Extrapolation methods

As in Example 1, we use the explicit Euler extrapolation methods (see Sec-
tion 4.3) with extrapolation steps Fk = {1, 2, .., k + 1} for k = 1, . . . , 9. This
corresponds to methods of order 2, 3, . . . , 10, see Figure 5.6.
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Example 2: Euler extrapolation methods
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Figure 5.6: Euler extrapolation methods of orders 2,3,...,10 applied to Example 2 with d = 20

5.3 Example 3

The third ODE we consider isy′(t) =
1

1 + y(t)2
, t ∈ [0, 1]

y(0) = 1.
(5.4)

5.3.1 Taylor methods

Although this right hand side is C∞ the radius of convergence of the Taylor
series is only 1. Therefore it can happen that increasing the order of the
Taylor method leads to worse approximations of the solutions if the time
interval is too long. The Taylor methods of order 1 to 11 are illustrated in
the convergence plot in Figure 5.7.
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Figure 5.7: Taylor methods of orders 1 to 11 applied to Example 3

5.3.2 Runge-Kutta methods

Here we again use the Runge-Kutta methods given in Section 3.1 and Sec-
tion 3.2 of order 1 to 8 and then apply two bootstrapping steps (with Gauss-
Legendre quadrature) to the 8th order method to get methods of order 9 and
10. The resulting convergence plot is given in Figure 5.8.
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Figure 5.8: Runge-Kutta methods of order 1 to 10 applied to Example 3

5.3.3 Extrapolation methods

This time we use the explicit midpoint extrapolation methods (see Section 4.4)
with extrapolation steps Fk = {2, 4, .., 2k+2} for k = 1, . . . , 7 to illustrate the
extrapolation methods. These correspond to methods of order 4, 6, . . . , 16,
since the order increases by 2 for each additional extrapolation step. The
convergence plot is shown in Figure 5.9. Note that the extrapolation meth-
ods appear to be more stable with respect to an increase in order compared
to the Taylor methods.
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Figure 5.9: Midpoint extrapolation methods of orders 4,6,...,16 applied to Example 3

5.4 Example 4

In this example let d ∈ N and consider a dth-order ODE of the form{
y(d)(t) = y(t)− y(t)3, t ∈ [t0, T ]

y(i)(t0) = 1, i ∈ {0, 1, . . . , d− 1}.
(5.5)

Although this is not an ODE of the form (1.1) it can be converted into our
framework by setting

z :=


y

y′

y(2)

...
y(d-1)

 (5.6)
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and

f(x) :=


x2

x3
...
xd

x1 − x3
1

 for all x ∈ Rd. (5.7)

Then the last coordinate of the solution of the ODE{
z′(t) = f(z(t)), t ∈ [0, 1]

zi(0) = 1, i ∈ {1, . . . , d}.
(5.8)

is the solution of the original ODE (5.5), i.e. y(t) = zi(t). In this example we
set d = 20.

5.4.1 Taylor methods

Here we use Taylor methods of order 1 to 8. The convergence plot is shown
in Figure 5.10.
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Figure 5.10: Taylor methods of orders 1 to 8 applied to Example 4 with d = 20
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5.4.2 Runge-Kutta methods

As above, we again use the Runge-Kutta methods given in Section 3.1 and
Section 3.2 of order 1 to 8 and then apply two bootstrapping steps (with
Gauss-Legendre quadrature) to the 8th order method to get methods of order
9 and 10, see Figure 5.11.
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Figure 5.11: Runge-Kutta methods of order 1 to 10 applied to Example 4 with d = 20

5.4.3 Extrapolation methods

In this example, we again use the explicit midpoint extrapolation methods
with Section 4.4) with extrapolation steps Fk = {2, 4, .., 2k + 2} for k =

1, . . . , 9. The resulting convergence plot is given in Figure 5.12.
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Figure 5.12: Midpoint extrapolation methods of orders 4,6,...,20 applied to Example 4 with
d = 20

5.5 Example 5

Finally, we examine another high-dimensional ODE. Again let d ∈ N and set

f(x) := Ax−

x
3
1
...
x3
d

 for all x ∈ Rd. (5.9)

where A ∈ Rd×d is the matrix given by

A =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1
. . .

...
...

...
...

. . . . . . 0

0 0 0 · · · 0 1

0 0 0 · · · 0 0


. (5.10)
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In this example we take d = 50 and consider the ODE{
y′(t) = f(y(t)), t ∈ [0, 1]

yi(0) = 1, i ∈ {1, . . . , d}.
(5.11)

5.5.1 Taylor methods

Due to the high dimensionality of this ODE the Taylor methods become very
inefficient and slow. Here we only use the Taylor methods of order 1 to 6,
see Figure 5.13.
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Figure 5.13: Taylor methods of orders 1 to 6 applied to Example 5

5.5.2 Runge-Kutta methods

The Runge-Kutta method are not effected by the dimension as strongly as
the Taylor methods. Here we again use the Runge-Kutta methods given in
Section 3.1 and Section 3.2 of order 1 to 8 and then apply two bootstrap-
ping steps (with Gauss-Legendre quadrature) to the 8th order method to get
methods of order 9 and 10, see Figure 5.14.
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Figure 5.14: Runge-Kutta methods of order 1 to 10 applied to Example 5

5.5.3 Extrapolation methods

The extrapolation methods also remain efficient for high dimensions. For
this example we use the explicit midpoint extrapolation methods (see Sec-
tion 4.4) with extrapolation steps Fk = {2, 4, .., 2k + 2} for k = 1, . . . , 9. The
convergence plot is given in Figure 5.15.
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Figure 5.15: Midpoint extrapolation methods of orders 4,6,...,20 applied to Example 5
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